Heegaard splittings of homology $3$-spheres
HTML articles powered by AMS MathViewer
- by Dean A. Neumann
- Trans. Amer. Math. Soc. 180 (1973), 485-495
- DOI: https://doi.org/10.1090/S0002-9947-1973-0339185-2
- PDF | Request permission
Abstract:
We investigate properties of Heegaard splittings of closed $3$-manifolds which are known for simply-connected manifolds and which might provide the basis for a general test for simple-connectivity. Our results are negative: each property considered is shown to hold in a wider class of manifolds.References
- R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217–231. MR 278287, DOI 10.1090/S0002-9947-1971-0278287-4
- Wolfgang Haken, Various aspects of the three-dimensional Poincaré problem, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 140–152. MR 0273624
- John Hempel, Construction of orientable $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 207–212. MR 0140115
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373 J. M. Martin, (to appear).
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
- C. D. Papakyriakopoulos, A reduction of the Poincaré conjecture to group theoretic conjectures, Ann. of Math. (2) 77 (1963), 250–305. MR 145496, DOI 10.2307/1970216 H. Seifert and W. Threlfall, Lehrbuch der Topologie, Akad. Verlagsgesellschaft, Teubner, Leipzig, 1934. E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Études Sci. Publ. Math., Paris, 1963.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 180 (1973), 485-495
- MSC: Primary 57A10
- DOI: https://doi.org/10.1090/S0002-9947-1973-0339185-2
- MathSciNet review: 0339185