Ultrafilter mappings and their Dedekind cuts
HTML articles powered by AMS MathViewer
- by Andreas Blass PDF
- Trans. Amer. Math. Soc. 188 (1974), 327-340 Request permission
Abstract:
Let D be an ultrafilter on the set N of natural numbers. To each function $p:N \to N$ and each ultrafilter E that is mapped to D by p, we associate a Dedekind cut in the ultrapower D-prod N. We characterize, in terms of rather simple closure conditions, the cuts obtainable in this manner when various restrictions are imposed on E and p. These results imply existence theorems, some known and some new, for various special kinds of ultrafilters and maps.References
-
A. Blass, Orderings of ultrafilters, Thesis, Harvard University, Cambridge, Mass., 1970.
- Andreas Blass, The Rudin-Keisler ordering of $P$-points, Trans. Amer. Math. Soc. 179 (1973), 145–166. MR 354350, DOI 10.1090/S0002-9947-1973-0354350-6
- David Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970/71), no. 1, 1–24. MR 277371, DOI 10.1016/0003-4843(70)90005-7
- Gustave Choquet, Construction d’ultrafiltres sur N, Bull. Sci. Math. (2) 92 (1968), 41–48 (French). MR 234405
- Gustave Choquet, Deux classes remarquables d’ultrafiltres sur N, Bull. Sci. Math. (2) 92 (1968), 143–153 (French). MR 236860
- P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294. MR 19911, DOI 10.1090/S0002-9904-1947-08785-1
- P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463–470. MR 1556929
- T. Frayne, A. C. Morel, and D. S. Scott, Reduced direct products, Fund. Math. 51 (1962/63), 195–228. MR 142459, DOI 10.4064/fm-51-3-195-228
- H. Jerome Keisler, Ultraproducts and saturated models, Nederl. Akad. Wetensch. Proc. Ser. A 67 = Indag. Math. 26 (1964), 178–186. MR 0168483, DOI 10.1016/S1385-7258(64)50021-9
- Mary Ellen Rudin, Partial orders on the types in $\beta N$, Trans. Amer. Math. Soc. 155 (1971), 353–362. MR 273581, DOI 10.1090/S0002-9947-1971-0273581-5
- Walter Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409–419. MR 80902
Additional Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 188 (1974), 327-340
- MSC: Primary 04A20
- DOI: https://doi.org/10.1090/S0002-9947-1974-0351822-6
- MathSciNet review: 0351822