Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Weighted $ L\sp{2}$ approximation of entire functions

Author: Devora Wohlgelernter
Journal: Trans. Amer. Math. Soc. 202 (1975), 211-219
MSC: Primary 30A82
MathSciNet review: 0355069
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be the space of entire functions $ f(z)$ such that $ \vert\vert f(z)\vert{\vert^2} = \smallint \smallint \vert f(z){\vert^2}dm(z)$, where $ m$ is a positive measure defined on the Borel sets of the complex plane. Write $ dm(z) = K(z)d{A_z} = K(r,\theta )dAz$. Theorem 1. If $ \ln {\inf _\theta }K(r,\theta )$ is asymptotic to $ \ln {\sup_\theta} K(r,\theta )$ (together with other mild restrictions) then polynomials are dense in $ S$. Theorem 2. Let $ K(z) = {e^{ - \phi (z)}}$ where $ \phi (z)$ is a convex function of $ z$ such that all exponentials belong to $ S$. Then polynomials are dense in $ S$.

References [Enhancements On Off] (What's this?)

  • [1] Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
  • [2] Lars Hörmander, La transformation de Legendre et le théorème de Paley-Wiener, C. R. Acad. Sci. Paris 240 (1955), 392–395 (French). MR 0067374
  • [3] J. Horváth, Approximacion $ y$ functiones casi-analytics, Madrid, 1956.
  • [4] R. Paley and N. Wiener, Fourier transform in the complex plane, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, R. I., 1934.
  • [5] B. A. Taylor, On weighted polynomial approximation of entire functions, Pacific J. Math. 36 (1971), 523–539. MR 0284801

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A82

Retrieve articles in all journals with MSC: 30A82

Additional Information

Keywords: Weighted $ {L^2}$ approximation, complete, dense
Article copyright: © Copyright 1975 American Mathematical Society