Weighted $L^{2}$ approximation of entire functions
HTML articles powered by AMS MathViewer
- by Devora Wohlgelernter
- Trans. Amer. Math. Soc. 202 (1975), 211-219
- DOI: https://doi.org/10.1090/S0002-9947-1975-0355069-X
- PDF | Request permission
Abstract:
Let $S$ be the space of entire functions $f(z)$ such that $||f(z)|{|^2} = \smallint \smallint |f(z){|^2}dm(z)$, where $m$ is a positive measure defined on the Borel sets of the complex plane. Write $dm(z) = K(z)d{A_z} = K(r,\theta )dAz$. Theorem 1. If $\ln {\inf _\theta }K(r,\theta )$ is asymptotic to $\ln {\sup _\theta } K(r,\theta )$ (together with other mild restrictions) then polynomials are dense in $S$. Theorem 2. Let $K(z) = {e^{ - \phi (z)}}$ where $\phi (z)$ is a convex function of $z$ such that all exponentials belong to $S$. Then polynomials are dense in $S$.References
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
- Lars Hörmander, La transformation de Legendre et le théorème de Paley-Wiener, C. R. Acad. Sci. Paris 240 (1955), 392–395 (French). MR 67374 J. Horváth, Approximacion $y$ functiones casi-analytics, Madrid, 1956. R. Paley and N. Wiener, Fourier transform in the complex plane, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, R. I., 1934.
- B. A. Taylor, On weighted polynomial approximation of entire functions, Pacific J. Math. 36 (1971), 523–539. MR 284801, DOI 10.2140/pjm.1971.36.523
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 202 (1975), 211-219
- MSC: Primary 30A82
- DOI: https://doi.org/10.1090/S0002-9947-1975-0355069-X
- MathSciNet review: 0355069