On the Frattini subgroups of generalized free products and the embedding of amalgams
Authors:
R. B. J. T. Allenby and C. Y. Tang
Journal:
Trans. Amer. Math. Soc. 203 (1975), 319-330
MSC:
Primary 20E30
DOI:
https://doi.org/10.1090/S0002-9947-1975-0357616-0
MathSciNet review:
0357616
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we shall prove a basic relation between the Frattini subgroup of the generalized free product of an amalgam $\mathfrak {A} = (A,B;H)$ and the embedding of $\mathfrak {A}$ into nonisomorphic groups, namely, if $\mathfrak {A}$ can be embedded into two non-isomorphic groups ${G_1} = \langle A,B\rangle$ and ${G_2} = \langle A,B\rangle$ then the Frattini subgroup of $G = {(A \ast B)_H}$ is contained in $H$. We apply this result to various cases. In particular, we show that if $A,B$ are locally solvable and $H$ is infinite cyclic then $\Phi (G)$ is contained in $H$.
- R. B. J. T. Allenby, On the residual finiteness of permutational products of groups, J. Austral. Math. Soc. 11 (1970), 504–506. MR 0276351
- R. B. J. T. Allenby and C. Y. Tang, On the Frattini subgroups of generalized free products, Bull. Amer. Math. Soc. 80 (1974), 119–121. MR 327908, DOI https://doi.org/10.1090/S0002-9904-1974-13381-1
- Gilbert Baumslag, On the residual finiteness of generalised free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193–209. MR 144949, DOI https://doi.org/10.1090/S0002-9947-1963-0144949-8
- D. Ž. Djoković and C. Y. Tang, On the Frattini subgroup of the generalized free product with amalgamation, Proc. Amer. Math. Soc. 32 (1972), 21–23. MR 289656, DOI https://doi.org/10.1090/S0002-9939-1972-0289656-7
- Joan Landman Dyer, On the residual finiteness of generalized free products, Trans. Amer. Math. Soc. 133 (1968), 131–143. MR 237649, DOI https://doi.org/10.1090/S0002-9947-1968-0237649-1
- R. J. Gregorac, On permutational products of groups, J. Austral. Math. Soc. 10 (1969), 111–135. MR 0245686
- R. J. Gregorac, On residually finite generalized free products, Proc. Amer. Math. Soc. 24 (1970), 553–555. MR 260878, DOI https://doi.org/10.1090/S0002-9939-1970-0260878-2
- Graham Higman and B. H. Neumann, On two questions of Itô, J. London Math. Soc. 29 (1954), 84–88. MR 57881, DOI https://doi.org/10.1112/jlms/s1-29.1.84
- B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. MR 62741, DOI https://doi.org/10.1098/rsta.1954.0007
- B. H. Neumann, Permutational products of groups, J. Austral. Math. Soc. 1 (1959/1960), 299–310. MR 0123597
- B. H. Neumann, On amalgams of periodic groups, Proc. Roy. Soc. London Ser. A 255 (1960), 477–489. MR 113927, DOI https://doi.org/10.1098/rspa.1960.0081
- C. Y. Tang, On the Frattini subgroups of generalized free products with cyclic amalgamations, Canad. Math. Bull. 15 (1972), 569–573. MR 314989, DOI https://doi.org/10.4153/CMB-1972-099-5
- C. Y. Tang, On the Frattini subgroups of certain generalized free products of groups, Proc. Amer. Math. Soc. 37 (1973), 63–68. MR 310073, DOI https://doi.org/10.1090/S0002-9939-1973-0310073-6
- Alice Whittemore, On the Frattini subgroup, Trans. Amer. Math. Soc. 141 (1969), 323–333. MR 245687, DOI https://doi.org/10.1090/S0002-9947-1969-0245687-9
Retrieve articles in Transactions of the American Mathematical Society with MSC: 20E30
Retrieve articles in all journals with MSC: 20E30
Additional Information
Keywords:
Frattini subgroup,
free group,
free product,
generalized free product,
permutational product,
wreath product,
nilpotent group,
solvable group,
amalgamated subgroup,
amalgam,
identical relation,
<IMG WIDTH="22" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="$G$">-normal
Article copyright:
© Copyright 1975
American Mathematical Society