Quasi-equivalence classes of normal representations for a separable $C^{\ast }$-algebra
HTML articles powered by AMS MathViewer
- by Herbert Halpern
- Trans. Amer. Math. Soc. 203 (1975), 129-140
- DOI: https://doi.org/10.1090/S0002-9947-1975-0367669-1
- PDF | Request permission
Abstract:
It is shown that the set of quasi-equivalence classes of normal representations of a separable ${C^\ast }$-algebra is a Borel subset of the quasi-dual with the Mackey Borel structure and forms a standard Borel space in the induced Borel structure. It is also shown that the set of factor states which induce normal representations forms a Borel set of the space of factor states with the ${w^\ast }$-topology and that this set has a Borel transversal.References
- Louis Auslander and Calvin C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. 62 (1966), 199. MR 207910
- N. Bourbaki, ĂlĂ©ments de mathĂ©matique. VIII. PremiĂšre partie: Les structures fondamentales de lâanalyse. Livre III: Topologie gĂ©nĂ©rale. Chapitre IX: Utilisation des nombres rĂ©els en topologie gĂ©nĂ©rale, ActualitĂ©s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1045, Hermann & Cie, Paris, 1948 (French). MR 0027138
- E. B. Davies, Decomposition of traces on separable $C^{\ast }$-algebras, Quart. J. Math. Oxford Ser. (2) 20 (1969), 97â111. MR 240638, DOI 10.1093/qmath/20.1.97
- Jacques Dixmier, Traces sur les $C^*$-algĂšbres, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 1, 219â262 (French). MR 149317, DOI 10.5802/aif.139
- Jacques Dixmier, Traces sur les $C^{\ast }$-algĂšbres. II, Bull. Sci. Math. (2) 88 (1964), 39â57 (French). MR 181906
- Jacques Dixmier, Les $C^{\ast }$-algĂšbres et leurs reprĂ©sentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Ăditeur-Imprimeur, Paris, 1964 (French). MR 0171173 â, Les algĂšbres dâopĂ©rateurs dans lâespace hilbertien, Gauthier-Villars, Paris, 1969.
- John A. Ernest, A decomposition theory for unitary representations of locally compact groups, Trans. Amer. Math. Soc. 104 (1962), 252â277. MR 139959, DOI 10.1090/S0002-9947-1962-0139959-X
- Alain Guichardet, CaractĂšres des algĂšbres de Banach involutives, Ann. Inst. Fourier (Grenoble) 13 (1963), 1â81 (French). MR 147925, DOI 10.5802/aif.130
- Herbert Halpern, Commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 139 (1969), 55â73. MR 251546, DOI 10.1090/S0002-9947-1969-0251546-8
- Herbert Halpern, Mackey Borel structure for the quasi-dual of a separable $C^{\ast }$-algebra, Canadian J. Math. 26 (1974), 621â628. MR 383092, DOI 10.4153/CJM-1974-059-9
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134â165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2 G. K. Pedersen, ${C^\ast }$-integrals, an approach to non-commutative measure theory, Lecture notes, Philadelphia, 1972.
- François Perdrizet, Topologie et traces sur les $C^{\ast }$-algĂšbres, Bull. Soc. Math. France 99 (1971), 193â239 (French). MR 293409, DOI 10.24033/bsmf.1716
- ShĂŽichirĂŽ Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 203 (1975), 129-140
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0367669-1
- MathSciNet review: 0367669