Function algebras and flows. IV
Author:
Paul S. Muhly
Journal:
Trans. Amer. Math. Soc. 203 (1975), 55-66
MSC:
Primary 46J10; Secondary 43A70
DOI:
https://doi.org/10.1090/S0002-9947-1975-0493358-9
MathSciNet review:
0493358
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The automorphisms of the algebra $\mathfrak {A}$ of analytic functions associated with a flow (without periodic orbits) are completely determined. This result extends earlier work of Arens who determined the automorphisms of $\mathfrak {A}$ when the flow is almost periodic. The Choquet boundary of the maximal ideal space of $\mathfrak {A}$ is also determined under the hypothesis that the flow has no fixed points.
- Richard Arens, A Banach algebra generalization of conformal mappings of the disc, Trans. Amer. Math. Soc. 81 (1956), 501–513. MR 78658, DOI https://doi.org/10.1090/S0002-9947-1956-0078658-7
- Karel de Leeuw, Walter Rudin, and John Wermer, The isometries of some function spaces, Proc. Amer. Math. Soc. 11 (1960), 694–698. MR 121646, DOI https://doi.org/10.1090/S0002-9939-1960-0121646-9
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- Frank Forelli, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33–59. MR 209771, DOI https://doi.org/10.1007/BF02392475
- Frank Forelli, Conjugate functions and flows, Quart. J. Math. Oxford Ser. (2) 20 (1969), 215–233. MR 251462, DOI https://doi.org/10.1093/qmath/20.1.215
- Gerald M. Leibowitz, Lectures on complex function algebras, Scott, Foresman and Co., Glenview, Ill., 1970. MR 0428042
- Samuel Merrill, Maximality of certain algebras $H^{\infty }\,(dm)$, Math. Z. 106 (1968), 861–266. MR 234289, DOI https://doi.org/10.1007/BF01110274
- Paul S. Muhly, Function algebras and flows, Acta Sci. Math. (Szeged) 35 (1973), 111–121. MR 331068
- Paul S. Muhly, Function algebras and flows, Acta Sci. Math. (Szeged) 35 (1973), 111–121. MR 331068
- Paul S. Muhly, Function algebras and flows. III, Math. Z. 136 (1974), 253–260. MR 493357, DOI https://doi.org/10.1007/BF01214129
- Masao Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, K\B{o}dai Math. Sem. Rep. 11 (1959), 182–188. MR 121645
- Guido Weiss, Weak$^{\ast } $-Dirichlet algebras induced by the ergodic Hilbert transform, L’analyse harmonique dans le domaine complexe (Actes Table Ronde Internat., Centre Nat. Recherche Sci., Montpellier, 1972) Springer, Berlin, 1973, pp. 20–27. Lecture Notes in Math., Vol. 336. MR 0394216
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46J10, 43A70
Retrieve articles in all journals with MSC: 46J10, 43A70
Additional Information
Article copyright:
© Copyright 1975
American Mathematical Society