Splitting an $\alpha$-recursively enumerable set
HTML articles powered by AMS MathViewer
- by Richard A. Shore
- Trans. Amer. Math. Soc. 204 (1975), 65-77
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379154-1
- PDF | Request permission
Abstract:
We extend the priority method in $\alpha$-recursion theory to certain arguments with no a priori bound on the required preservations by proving the splitting theorem for all admissible $\alpha$. THEOREM: Let $C$ be a regular $\alpha$-r.e. set and $D$ be a nonrecursive $\alpha$-r.e. set. Then there are regular $\alpha$-r.e. sets $A$ and $B$ such that $A \cup B = C,A \cap B = \phi ,A,B{ \leq _\alpha }C$ and such that $D$ is not $\alpha$-recursive in $A$ or $B$. The result is also strengthened to apply to ${ \leq _{c\alpha }}$, and various corollaries about the structure of the $\alpha$ and $c\alpha$ recursively enumerable degrees are proved.References
- L. Harrington, Contributions to recursion theory on higher types, Ph. D. Thesis, M. I. T., Cambridge, Mass., 1973.
- G. Kreisel and Gerald E. Sacks, Metarecursive sets, J. Symbolic Logic 30 (1965), 318–338. MR 213233, DOI 10.2307/2269621
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0224462
- Gerald E. Sacks, Degrees of unsolvability, Princeton University Press, Princeton, N.J., 1963. MR 0186554
- Gerald E. Sacks, Higher recursion theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990. MR 1080970, DOI 10.1007/BFb0086109
- Gerald E. Sacks, Post’s problem, admissible ordinals, and regularity, Trans. Amer. Math. Soc. 124 (1966), 1–23. MR 201299, DOI 10.1090/S0002-9947-1966-0201299-1
- G. E. Sacks and S. G. Simpson, The $\alpha$-finite injury method, Ann. Math. Logic 4 (1972), 343–367. MR 369041, DOI 10.1016/0003-4843(72)90004-6
- Joseph R. Shoenfield, Degrees of unsolvability, North-Holland Mathematics Studies, No. 2, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. Dedicated to S. C. Kleene. MR 0340011
- Richard A. Shore, $\sum _{n}$ sets which are $\Delta _{n}$-incomparable (uniformly), J. Symbolic Logic 39 (1974), 295–304. MR 419197, DOI 10.2307/2272642 —, The irregular and non-hyperregular $\alpha$-r.e. degrees (to appear). —, The recursively enumerable $\alpha$-degrees are dense, Ann. Math. Logic (to appear).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 204 (1975), 65-77
- MSC: Primary 02F27
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379154-1
- MathSciNet review: 0379154