Obstruction theory with coefficients in a spectrum
HTML articles powered by AMS MathViewer
- by Mark Mahowald and Robert Rigdon
- Trans. Amer. Math. Soc. 204 (1975), 365-384
- DOI: https://doi.org/10.1090/S0002-9947-1975-0488058-5
- PDF | Request permission
Abstract:
In this paper an obstruction theory with coefficients in a spectrum is developed. An idea of orientability of a fiber bundle with respect to a spectrum is introduced and for bundles orientable with respect to the spectrum a resolution is produced which corresponds to a modified Postnikov tower in the classical case.References
- J. F. Adams, Stable homotopy and generalized homology, Mathematics Lecture Notes, University of Chicago, 1971.
- Donald W. Anderson, Resolutions of fibrations, Bol. Soc. Mat. Mexicana (2) 16 (1971), 26–28. MR 348742
- James C. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc. 133 (1968), 447–475. MR 236924, DOI 10.1090/S0002-9947-1968-0236924-4
- James C. Becker, Extensions of cohomology theories, Illinois J. Math. 14 (1970), 551–584. MR 273598
- A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79–106. MR 283801, DOI 10.1016/0040-9383(72)90024-9
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
- S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85–107. MR 231367
- I. M. Hall, The generalized Whitney sum, Quart. J. Math. Oxford Ser. (2) 16 (1965), 360–384. MR 187245, DOI 10.1093/qmath/16.4.360
- Lawrence L. Larmore, Twisted cohomology theories and the single obstruction to lifting, Pacific J. Math. 41 (1972), 755–769. MR 353315, DOI 10.2140/pjm.1972.41.755
- Mark Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315–349. MR 157386, DOI 10.1090/S0002-9947-1964-0157386-8
- W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47–65. MR 189032, DOI 10.1016/0040-9383(65)90048-0
- J. F. McClendon, A spectral sequence for classifing liftings in fiber spaces, Bull. Amer. Math. Soc. 74 (1968), 982–984. MR 234464, DOI 10.1090/S0002-9904-1968-12110-X
- J. F. McClendon, Higher order twisted cohomology operations, Invent. Math. 7 (1969), 183–214. MR 250302, DOI 10.1007/BF01404305
- James F. McClendon, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1–17. MR 296943, DOI 10.1007/BF01109713 J.-P. Meyer, Relative stable cohomotopy, Conference on Algebraic Topology, University of Illinois at Chicago Circle, 1968, pp. 206-212.
- Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers, New York-London, 1968. MR 0226634
- Jerrold Siegel, $k$-invariants in local coefficient theory, Proc. Amer. Math. Soc. 29 (1971), 169–174. MR 307224, DOI 10.1090/S0002-9939-1971-0307224-4
- James Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246. MR 154286, DOI 10.1016/0040-9383(63)90006-5
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 204 (1975), 365-384
- MSC: Primary 55G35; Secondary 55G40
- DOI: https://doi.org/10.1090/S0002-9947-1975-0488058-5
- MathSciNet review: 0488058