Obstruction theory with coefficients in a spectrum
HTML articles powered by AMS MathViewer
 by Mark Mahowald and Robert Rigdon PDF
 Trans. Amer. Math. Soc. 204 (1975), 365384 Request permission
Abstract:
In this paper an obstruction theory with coefficients in a spectrum is developed. An idea of orientability of a fiber bundle with respect to a spectrum is introduced and for bundles orientable with respect to the spectrum a resolution is produced which corresponds to a modified Postnikov tower in the classical case.References

J. F. Adams, Stable homotopy and generalized homology, Mathematics Lecture Notes, University of Chicago, 1971.
 Donald W. Anderson, Resolutions of fibrations, Bol. Soc. Mat. Mexicana (2) 16 (1971), 26–28. MR 348742
 James C. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc. 133 (1968), 447–475. MR 236924, DOI 10.1090/S00029947196802369244
 James C. Becker, Extensions of cohomology theories, Illinois J. Math. 14 (1970), 551–584. MR 273598
 A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79–106. MR 283801, DOI 10.1016/00409383(72)900249
 Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
 S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85–107. MR 231367
 I. M. Hall, The generalized Whitney sum, Quart. J. Math. Oxford Ser. (2) 16 (1965), 360–384. MR 187245, DOI 10.1093/qmath/16.4.360
 Lawrence L. Larmore, Twisted cohomology theories and the single obstruction to lifting, Pacific J. Math. 41 (1972), 755–769. MR 353315, DOI 10.2140/pjm.1972.41.755
 Mark Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315–349. MR 157386, DOI 10.1090/S00029947196401573868
 W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47–65. MR 189032, DOI 10.1016/00409383(65)900480
 J. F. McClendon, A spectral sequence for classifing liftings in fiber spaces, Bull. Amer. Math. Soc. 74 (1968), 982–984. MR 234464, DOI 10.1090/S00029904196812110X
 J. F. McClendon, Higher order twisted cohomology operations, Invent. Math. 7 (1969), 183–214. MR 250302, DOI 10.1007/BF01404305
 James F. McClendon, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1–17. MR 296943, DOI 10.1007/BF01109713 J.P. Meyer, Relative stable cohomotopy, Conference on Algebraic Topology, University of Illinois at Chicago Circle, 1968, pp. 206212.
 Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers, New YorkLondon, 1968. MR 0226634
 Jerrold Siegel, $k$invariants in local coefficient theory, Proc. Amer. Math. Soc. 29 (1971), 169–174. MR 307224, DOI 10.1090/S00029939197103072244
 James Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246. MR 154286, DOI 10.1016/00409383(63)900065
Additional Information
 © Copyright 1975 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 204 (1975), 365384
 MSC: Primary 55G35; Secondary 55G40
 DOI: https://doi.org/10.1090/S00029947197504880585
 MathSciNet review: 0488058