Interpolation properties of generalized perfect splines and the solutions of certain extremal problems. I
HTML articles powered by AMS MathViewer
- by Samuel Karlin PDF
- Trans. Amer. Math. Soc. 206 (1975), 25-66 Request permission
Abstract:
The existence of generalized perfect splines satisfying certain interpolation and/or moment conditions are established. In particular, the existence of ordinary perfect splines obeying boundary and interpolation conditions is demonstrated; precise criteria for the uniqueness of such interpolatory perfect splines are indicated. These are shown to solve a host of variational problems in certain Sobolev spaces.References
-
S. D. Fisher and J. W. Jerome, Perfect spline solutions to ${L^\infty }$ extremal problems (preprint).
- G. Glaeser, Prolongement extrémal de fonctions différentiables d’une variable, J. Approximation Theory 8 (1973), 249–261 (French). MR 348068, DOI 10.1016/0021-9045(73)90011-7
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- Samuel Karlin, Total positivity, interpolation by splines, and Green’s functions of differential operators, J. Approximation Theory 4 (1971), 91–112. MR 275022, DOI 10.1016/0021-9045(71)90041-4
- Samuel Karlin, Some variational problems on certain Sobolev spaces and perfect splines, Bull. Amer. Math. Soc. 79 (1973), 124–128. MR 308769, DOI 10.1090/S0002-9904-1973-13126-X
- Samuel Karlin and John M. Karon, Poised and non-poised Hermite-Birkhoff interpolation, Indiana Univ. Math. J. 21 (1971/72), 1131–1170. MR 315328, DOI 10.1512/iumj.1972.21.21090
- Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
- M. G. Kreĭn, The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of integrals and their further development, Amer. Math. Soc. Transl. (2) 12 (1959), 1–121. MR 0113106, DOI 10.1090/trans2/012/01 R. Louboutin, Sur une bonne partition de l’unite. Appeared in Le prolongateur de Whitney. Vol. II; Ed. Glaeser, Univ. of Rennes, 1967.
- I. J. Schoenberg, The perfect $B$-splines and a time-optimal control problem, Israel J. Math. 10 (1971), 261–274. MR 320594, DOI 10.1007/BF02771643 I. J. Schoenberg and A. Cavaretta, Solution of Landau’s problem concerning higher derivatives on the half line, Report No. 1050, M.R.C., University of Wisconsin, Madison, Wis., 1970.
- V. M. Tihomirov, Best methods of approximation and interpolation of differentiable functions in the space $C[-1,\,1].$, Mat. Sb. (N.S.) 80 (122) (1969), 290–304 (Russian). MR 0256043
Additional Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 206 (1975), 25-66
- MSC: Primary 41A15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0367512-0
- MathSciNet review: 0367512