On the fixed point set of a compact transformation group with some applications to compact monoids
HTML articles powered by AMS MathViewer
- by Karl Heinrich Hofmann and Michael Mislove
- Trans. Amer. Math. Soc. 206 (1975), 137-162
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374320-3
- PDF | Request permission
Abstract:
Under various special additional hypotheses we prove that the fixed point set of the group of inner automorphisms of a compact connected monoid with zero is connected.References
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0221500
- J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Mathematics, No. 42, Springer-Verlag, Berlin-New York, 1967. MR 0223483
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791 K. H. Hofmann, Introduction to the theory of compact groups. II, Tulane University Lecture Notes, 1969.
- Karl Heinrich Hofmann and Michael Mislove, The centralizing theorem for left normal groups of units in compact monoids, Semigroup Forum 3 (1971/72), no. 1, 31–42. MR 311830, DOI 10.1007/BF02572939
- Karl Heinrich Hofmann and Paul S. Mostert, Elements of compact semigroups, Charles E. Merrill Books, Inc., Columbus, Ohio, 1966. MR 0209387
- Bernard Madison, Semigroups on coset spaces, Duke Math. J. 36 (1969), 61–63. MR 237702
- D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 65 (1957), 108–116. MR 87036, DOI 10.2307/1969667
- James T. Rogers Jr. and Jeffrey L. Tollefson, Involutions on solenoidal spaces, Fund. Math. 73 (1971/72), no. 1, 11–19. MR 296923, DOI 10.4064/fm-73-1-11-19
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 206 (1975), 137-162
- MSC: Primary 22A15; Secondary 54H15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374320-3
- MathSciNet review: 0374320