Compactness properties of topological groups. III
HTML articles powered by AMS MathViewer
- by S. P. Wang
- Trans. Amer. Math. Soc. 209 (1975), 399-418
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374329-X
- PDF | Request permission
Abstract:
Compactness properties of topological groups and finiteness of Haar measure on homogeneous spaces are studied. Some concrete structure theorems are presented.References
- Reinhold Baer, Finiteness properties of groups, Duke Math. J. 15 (1948), 1021–1032. MR 27760 C. Chevalley, Theory of Lie groups. Vol. 1, Princeton Math. Ser., vol. 8, Princeton Univ. Press, Princeton, N. J., 1946. MR 7, 412
- Morikuni Goto, Dense imbeddings of locally compact connected groups, Ann. of Math. (2) 61 (1955), 154–169. MR 65567, DOI 10.2307/1969626
- Morikuni Goto, A remark on a theorem of A. Weil, Proc. Amer. Math. Soc. 20 (1969), 163–165. MR 232888, DOI 10.1090/S0002-9939-1969-0232888-4
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Bull. Amer. Math. Soc. 72 (1966), 826–830. MR 194554, DOI 10.1090/S0002-9904-1966-11575-6
- Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR 29911, DOI 10.2307/1969548
- Kenkichi Iwasawa, Topological groups with invariant compact neighborhoods of the identity, Ann. of Math. (2) 54 (1951), 345–348. MR 43106, DOI 10.2307/1969536
- G. D. Mostow, Homogeneous spaces with finite invariant measure, Ann. of Math. (2) 75 (1962), 17–37. MR 145007, DOI 10.2307/1970416
- B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3) 1 (1951), 178–187. MR 43779, DOI 10.1112/plms/s3-1.1.178 L. S. Pontrjagin, Continuous groups, GITTL, Moscow, 1938; English transl., Topological groups, Princeton Math. Ser., vol. 2, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 44.
- Carl Ludwig Siegel, Discontinuous groups, Ann. of Math. (2) 44 (1943), 674–689. MR 9959, DOI 10.2307/1969104
- J. Tits, Automorphismes à déplacement borné des groupes de Lie, Topology 3 (1964), no. suppl, suppl. 1, 97–107 (French). MR 158948, DOI 10.1016/0040-9383(64)90007-2 V. I. Ušakov, A certain class of topological groups, Dokl. Akad. Nauk SSSR 144 (1962), 65-68 = Soviet Math. Dokl. 3 (1962), 682-685. MR 25 #143.
- V. I. Ušakov, Topological $\overline {FC}$-groups, Sibirsk. Mat. Ž. 4 (1963), 1162–1174 (Russian). MR 0165031
- V. I. Ušakov, Classes of conjugate subgroups in topological groups, Dokl. Akad. Nauk SSSR 190 (1970), 51–53 (Russian). MR 0257267
- S. P. Wang, Compactness properties of topological groups, Trans. Amer. Math. Soc. 154 (1971), 301–314. MR 271269, DOI 10.1090/S0002-9947-1971-0271269-8
- S. P. Wang, Compactness properties of topological groups. II, Duke Math. J. 39 (1972), 243–251. MR 296209 —, Homogeneous spaces with finite invariant volume (to appear). A. Weil, L’intégration dans les groupes topologigues, 2nd ed., Hermann, Paris, 1965.
- T. S. Wu, A certain type of locally compact totally disconnected topological groups, Proc. Amer. Math. Soc. 23 (1969), 613–614. MR 249537, DOI 10.1090/S0002-9939-1969-0249537-1
- T. S. Wu and Y. K. Yu, Compactness properties of topological groups, Michigan Math. J. 19 (1972), 299–313. MR 318391
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 399-418
- MSC: Primary 22D05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374329-X
- MathSciNet review: 0374329