Compactness properties of topological groups. III
Author:
S. P. Wang
Journal:
Trans. Amer. Math. Soc. 209 (1975), 399-418
MSC:
Primary 22D05
DOI:
https://doi.org/10.1090/S0002-9947-1975-0374329-X
MathSciNet review:
0374329
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Compactness properties of topological groups and finiteness of Haar measure on homogeneous spaces are studied. Some concrete structure theorems are presented.
- Reinhold Baer, Finiteness properties of groups, Duke Math. J. 15 (1948), 1021–1032. MR 27760 C. Chevalley, Theory of Lie groups. Vol. 1, Princeton Math. Ser., vol. 8, Princeton Univ. Press, Princeton, N. J., 1946. MR 7, 412
- Morikuni Goto, Dense imbeddings of locally compact connected groups, Ann. of Math. (2) 61 (1955), 154–169. MR 65567, DOI https://doi.org/10.2307/1969626
- Morikuni Goto, A remark on a theorem of A. Weil, Proc. Amer. Math. Soc. 20 (1969), 163–165. MR 232888, DOI https://doi.org/10.1090/S0002-9939-1969-0232888-4
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Bull. Amer. Math. Soc. 72 (1966), 826–830. MR 194554, DOI https://doi.org/10.1090/S0002-9904-1966-11575-6
- Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR 29911, DOI https://doi.org/10.2307/1969548
- Kenkichi Iwasawa, Topological groups with invariant compact neighborhoods of the identity, Ann. of Math. (2) 54 (1951), 345–348. MR 43106, DOI https://doi.org/10.2307/1969536
- G. D. Mostow, Homogeneous spaces with finite invariant measure, Ann. of Math. (2) 75 (1962), 17–37. MR 145007, DOI https://doi.org/10.2307/1970416
- B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3) 1 (1951), 178–187. MR 43779, DOI https://doi.org/10.1112/plms/s3-1.1.178 L. S. Pontrjagin, Continuous groups, GITTL, Moscow, 1938; English transl., Topological groups, Princeton Math. Ser., vol. 2, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 44.
- Carl Ludwig Siegel, Discontinuous groups, Ann. of Math. (2) 44 (1943), 674–689. MR 9959, DOI https://doi.org/10.2307/1969104
- J. Tits, Automorphismes à déplacement borné des groupes de Lie, Topology 3 (1964), no. suppl, suppl. 1, 97–107 (French). MR 158948, DOI https://doi.org/10.1016/0040-9383%2864%2990007-2 V. I. Ušakov, A certain class of topological groups, Dokl. Akad. Nauk SSSR 144 (1962), 65-68 = Soviet Math. Dokl. 3 (1962), 682-685. MR 25 #143.
- V. I. Ušakov, Topological $\overline {FC}$-groups, Sibirsk. Mat. Ž. 4 (1963), 1162–1174 (Russian). MR 0165031
- V. I. Ušakov, Classes of conjugate subgroups in topological groups, Dokl. Akad. Nauk SSSR 190 (1970), 51–53 (Russian). MR 0257267
- S. P. Wang, Compactness properties of topological groups, Trans. Amer. Math. Soc. 154 (1971), 301–314. MR 271269, DOI https://doi.org/10.1090/S0002-9947-1971-0271269-8
- S. P. Wang, Compactness properties of topological groups. II, Duke Math. J. 39 (1972), 243–251. MR 296209 ---, Homogeneous spaces with finite invariant volume (to appear). A. Weil, L’intégration dans les groupes topologigues, 2nd ed., Hermann, Paris, 1965.
- T. S. Wu, A certain type of locally compact totally disconnected topological groups, Proc. Amer. Math. Soc. 23 (1969), 613–614. MR 249537, DOI https://doi.org/10.1090/S0002-9939-1969-0249537-1
- T. S. Wu and Y. K. Yu, Compactness properties of topological groups, Michigan Math. J. 19 (1972), 299–313. MR 318391
Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D05
Retrieve articles in all journals with MSC: 22D05
Additional Information
Keywords:
Locally compact groups,
Lie groups,
periodic elements,
bounded elements,
Haar measure
Article copyright:
© Copyright 1975
American Mathematical Society