$a^*$-closures of lattice-ordered groups
HTML articles powered by AMS MathViewer
- by Roger Bleier and Paul Conrad
- Trans. Amer. Math. Soc. 209 (1975), 367-387
- DOI: https://doi.org/10.1090/S0002-9947-1975-0404087-1
- PDF | Request permission
Abstract:
A convex $l$-subgroup of an $l$-group $G$ is closed if it contains the join of each of its subsets that has a join in $G$. An extension of $G$ which preserves the lattice of closed convex $l$-subgroups of $G$ is called an ${a^ \ast }$-extension of $G$. In this paper we consider ${a^ \ast }$-extensions and ${a^ \ast }$-closures of $G$.References
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053 A. Bigard, Contribution a la théorie des groupes reticules, Thesis, University of Paris, 1969.
- Roger D. Bleier, The SP-hull of a lattice-ordered group, Canadian J. Math. 26 (1974), 866–878. MR 345891, DOI 10.4153/CJM-1974-081-x
- Roger Bleier and Paul Conrad, The lattice of closed ideals and $a^{\ast }$-extensions of an abelian $l$-group, Pacific J. Math. 47 (1973), 329–340. MR 325486, DOI 10.2140/pjm.1973.47.329
- J. W. Brewer, P. F. Conrad, and P. R. Montgomery, Lattice-ordered groups and a conjecture for adequate domains, Proc. Amer. Math. Soc. 43 (1974), 31–35. MR 332616, DOI 10.1090/S0002-9939-1974-0332616-X
- Richard D. Byrd, Complete distributivity in lattice-ordered groups, Pacific J. Math. 20 (1967), 423–432. MR 207866, DOI 10.2140/pjm.1967.20.423
- Richard D. Byrd and Justin T. Lloyd, Closed subgroups and complete distributivity in lattice-ordered groups, Math. Z. 101 (1967), 123–130. MR 218284, DOI 10.1007/BF01136029
- Donald A. Chambless, Representation of the projectable and strongly projectable hulls of a lattice-ordered group, Proc. Amer. Math. Soc. 34 (1972), 346–350. MR 295990, DOI 10.1090/S0002-9939-1972-0295990-7
- Paul Conrad, The essential closure of an Archimedean lattice-ordered group, Duke Math. J. 38 (1971), 151–160. MR 277457
- Paul Conrad, The hulls of representable $l$-groups and $f$-rings, J. Austral. Math. Soc. 16 (1973), 385–415. Collection of articles dedicated to the memory of Hanna Neumann, IV. MR 0344173, DOI 10.1017/S1446788700015391 —, Lattice-ordered groups, Tulane University, New Orleans, La., 1970.
- Paul Conrad, On ordered division rings, Proc. Amer. Math. Soc. 5 (1954), 323–328. MR 61582, DOI 10.1090/S0002-9939-1954-0061582-7
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- A. M. W. Glass and W. Charles Holland (eds.), Lattice-ordered groups, Mathematics and its Applications, vol. 48, Kluwer Academic Publishers Group, Dordrecht, 1989. Advances and techniques. MR 1036072, DOI 10.1007/978-94-009-2283-9 S. Wolfenstein, Contribution à l’étude des groupes reticulés; extensions archimédiennes, groupes à valeurs normales, Thesis, University of Paris, 1970. R. Ball, Ph. D. Thesis, University of Wisconsin, Madison, Wis., 1974.
- Charles Holland, Extensions of ordered groups and sequence completion, Trans. Amer. Math. Soc. 107 (1963), 71–82. MR 146273, DOI 10.1090/S0002-9947-1963-0146273-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 367-387
- MSC: Primary 06A55
- DOI: https://doi.org/10.1090/S0002-9947-1975-0404087-1
- MathSciNet review: 0404087