Equivariant homology theories on $G$-complexes
HTML articles powered by AMS MathViewer
- by Stephen J. Willson
- Trans. Amer. Math. Soc. 212 (1975), 155-171
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377859-X
- PDF | Request permission
Abstract:
A definition is given for a âcellularâ equivariant homology theory on G-complexes. The definition is shown to generalize to G-complexes with prescribed isotropy subgroups. A ring I is introduced to deal with the general definition. One obtains a universal coefficient theorem and studies the universal coefficients.References
- Glen E. Bredon, Equivariant cohomology theories, Bull. Amer. Math. Soc. 73 (1967), 266â268. MR 206946, DOI 10.1090/S0002-9904-1967-11712-9
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062
- Theodor Bröcker, SingulĂ€re Definition der Ă€quivarianten Bredon Homologie, Manuscripta Math. 5 (1971), 91â102 (German, with English summary). MR 293618, DOI 10.1007/BF01397610
- Eldon Dyer, Cohomology theories, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0268883 Sören Illman, Equivariant algebraic topology, Thesis, Princeton University, Princeton, N. J., 1972.
- Sören Illman, Equivariant singular homology and cohomology for actions of compact Lie groups, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 298, Springer, Berlin, 1972, pp. 403â415. MR 0377858
- Sören Illman, Equivariant singular homology and cohomology, Bull. Amer. Math. Soc. 79 (1973), 188â192. MR 307220, DOI 10.1090/S0002-9904-1973-13148-9
- C. N. Lee, Equivariant homology theories, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 237â244. MR 0250299 Saunders Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
- Takao Matumoto, Equivariant $K$-theory and Fredholm operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 109â125. MR 0290354
- C. Vaseekaran, Equivariant homotopy theory, Bull. Amer. Math. Soc. 80 (1974), 322â324. MR 331389, DOI 10.1090/S0002-9904-1974-13483-X S. J. Willson, Equivariant homology theories, Thesis, University of Michigan, Ann Arbor, Mich., 1973.
- Stephen J. Willson, Equivariant maps between representation spheres, Pacific J. Math. 56 (1975), no. 1, 291â296. MR 394715
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 212 (1975), 155-171
- MSC: Primary 55B25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377859-X
- MathSciNet review: 0377859