Diffeomorphisms obtained from endomorphisms
HTML articles powered by AMS MathViewer
- by Louis Block
- Trans. Amer. Math. Soc. 214 (1975), 403-413
- DOI: https://doi.org/10.1090/S0002-9947-1975-0388457-6
- PDF | Request permission
Abstract:
It is shown that if f is a differentiable map of a compact manifold, and the singularities of f satisfy a certain condition, then there is a diffeomorphism (of a different manifold) whose orbit structure is closely related to that of f. This theorem is then used to extend several results on the orbit structure of diffeomorphisms to the noninvertible case.References
- Louis Block, Morse-Smale endomorphisms of the circle, Proc. Amer. Math. Soc. 48 (1975), 457โ463. MR 413186, DOI 10.1090/S0002-9939-1975-0413186-5
- Louis Block and John Franke, A classification of the structurally stable contracting endomorphisms of $S^{1}$, Proc. Amer. Math. Soc. 36 (1972), 597โ602. MR 309154, DOI 10.1090/S0002-9939-1972-0309154-1
- Louis Block and John Franke, Existence of periodic points for maps of $S^{1}$, Invent. Math. 22 (1973/74), 69โ73. MR 358867, DOI 10.1007/BF01425575
- John Guckenheimer, Endomorphisms of the Riemann sphere, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp.ย 95โ123. MR 0274740
- Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp.ย 133โ163. MR 0271991
- M. V. Jakobson, Smooth mappings of the circle into itself, Mat. Sb. (N.S.) 85 (127) (1971), 163โ188 (Russian). MR 0290406
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942, DOI 10.1515/9781400878055
- Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175โ199. MR 240824, DOI 10.2307/2373276
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747โ817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- S. Smale, The $\Omega$-stability theorem, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp.ย 289โ297. MR 0271971
- R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473โ487. MR 217808, DOI 10.1016/0040-9383(67)90005-5
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 403-413
- MSC: Primary 58F20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0388457-6
- MathSciNet review: 0388457