On angular momentum Helmholtz theorems and cohomology of Lie algebras
Author:
Henrik Stetkaer
Journal:
Trans. Amer. Math. Soc. 214 (1975), 349-374
MSC:
Primary 57E20; Secondary 58F05
DOI:
https://doi.org/10.1090/S0002-9947-1975-0410775-3
MathSciNet review:
0410775
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Helmholtz' 2nd theorem (that every vector field on with vanishing curl is gradient of a function) can be viewed as a statement about the group of translations of
. We prove similar theorems for other Lie transformation groups, in particular for semidirect products of abelian and compact semisimple groups. Using Hodge theory we also obtain results analogous to the 1st Helmholtz theorem, but only for compact Lie transformation groups.
- [1] N. Bourbaki, Éléments de mathématique. XXV. Première partie. Livre VI: Intégration. Chapitre 6: Intégration vectorielle, Actualités Sci. Ind. No. 1281, Hermann, Paris, 1959 (French). MR 0124722
- [2] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- [3] John T. Cannon and Thomas F. Jordan, A no-interaction theorem in classical relativistic Hamiltonian particle dynamics, J. Mathematical Phys. 5 (1964), 299–307. MR 170649, https://doi.org/10.1063/1.1704121
- [4] Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124. MR 24908, https://doi.org/10.1090/S0002-9947-1948-0024908-8
- [5] J. J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), no. 3-4, 183–269. MR 388464, https://doi.org/10.1007/BF02392165
- [6] W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 493-504. MR 15, 505.
- [7] Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- [8] G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962), 367–401. MR 0147577
- [9] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. MR 0143793
- [10] Joseph B. Keller, Simple proofs of the theorems of J. S. Lomont and H. E. Moses on the decomposition and representation of vector fields, Comm. Pure Appl. Math. 14 (1961), 77–80. MR 126955, https://doi.org/10.1002/cpa.3160140106
- [11] G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; 2nd ed., 1966; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 33 #3069; 40 #1750.
- [12] H. Leutwyler, Group-theoretical basis of the angular momentum Helmholtz theorem of Lomont and Moses, Nuovo Cimento 37 (1965), 543-555.
- [13] -, A no-interaction theorem in classical relativistic Hamiltonian particle mechanics, Nuovo Cimento 37 (1965), 556-567.
- [14] J. S. Lomont and H. E. Moses, An angular momentum Helmholtz theorem, Comm. Pure Appl. Math. 14 (1961), 69–76. MR 126954, https://doi.org/10.1002/cpa.3160140105
- [15] Ottmar Loos, Symmetric spaces. I: General theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0239005
- [16] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. MR 0507234
- [17] V. S. Varadajaran, Geomerty of quantum theory. II, Van Nostrand, Princeton, N. J., 1970.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57E20, 58F05
Retrieve articles in all journals with MSC: 57E20, 58F05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1975-0410775-3
Keywords:
Differential 1-forms,
Helmholtz theorems,
Hodge theory,
Lie algebra cohomology,
Lie transformation group
Article copyright:
© Copyright 1975
American Mathematical Society