Cohomology of finite covers
Author:
Allan Calder
Journal:
Trans. Amer. Math. Soc. 218 (1976), 349-352
MSC:
Primary 55B05
DOI:
https://doi.org/10.1090/S0002-9947-1976-0400205-0
MathSciNet review:
0400205
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For a finite dimensional CW-complex, X, and $q > 1$, it is shown that the qth Čech cohomology group based on finite open covers of X, $H_f^q(X)$, is naturally isomorphic to ${H^q}(X)$, the qth Čech cohomology of X (i.e. based on locally finite covers), and for reasonable X, ${H^1}(X)$ can be obtained algebraically from $H_f^1(X)$.
- Allan Calder, On the cohomology of $\beta R^{n}$, Quart. J. Math. Oxford Ser. (2) 25 (1974), 385–394. MR 365549, DOI https://doi.org/10.1093/qmath/25.1.385 E. Čech, Théorie générale de l’homologie dans un espace quelconque, Fund. Math. 19 (1932), 149-183.
- C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200–242. MR 20771, DOI https://doi.org/10.2307/2371848 S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 61-112.
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR 0050886 A. G. Kuroš, The theory of groups, 2nd ed., GITTL, Moscow, 1953; English transl., Chelsea, New York, 1955. MR 15, 501; 17, 124.
- C. N. Lee and Frank Raymond, Čech extensions of contravariant functors, Trans. Amer. Math. Soc. 133 (1968), 415–434. MR 234450, DOI https://doi.org/10.1090/S0002-9947-1968-0234450-X
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095
Retrieve articles in Transactions of the American Mathematical Society with MSC: 55B05
Retrieve articles in all journals with MSC: 55B05
Additional Information
Article copyright:
© Copyright 1976
American Mathematical Society