Comparison of eigenvalues associated with linear differential equations of arbitrary order
HTML articles powered by AMS MathViewer
- by R. D. Gentry and C. C. Travis
- Trans. Amer. Math. Soc. 223 (1976), 167-179
- DOI: https://doi.org/10.1090/S0002-9947-1976-0425241-X
- PDF | Request permission
Abstract:
Existence and comparison theorems for eigenvalues of $(k,n - k)$-focal point and $(k,n - k)$-conjugate point problems are proved for a class of nth order linear differential equations for arbitrary n.References
- M. A. Krasnosel′skiÄ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 0181881
- Zeev Nehari, Nonlinear techniques for linear oscillation problems, Trans. Amer. Math. Soc. 210 (1975), 387–406. MR 372327, DOI 10.1090/S0002-9947-1975-0372327-3
- Zeev Nehari, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428–445. MR 87816, DOI 10.1090/S0002-9947-1957-0087816-8
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
- Curtis C. Travis, Comparison of eigenvalues for linear differential equations of order $2n$, Trans. Amer. Math. Soc. 177 (1973), 363–374. MR 316808, DOI 10.1090/S0002-9947-1973-0316808-5
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 223 (1976), 167-179
- MSC: Primary 34B25; Secondary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0425241-X
- MathSciNet review: 0425241