Analysis with weak trace ideals and the number of bound states of Schrödinger operators
HTML articles powered by AMS MathViewer
- by Barry Simon
- Trans. Amer. Math. Soc. 224 (1976), 367-380
- DOI: https://doi.org/10.1090/S0002-9947-1976-0423128-X
- PDF | Request permission
Abstract:
We discuss interpolation theory for the operator ideals $I_p^w$ defined on a separable Hilbert space as those operators A whose singular values ${\mu _n}(A)$ obey ${\mu _n} \leqslant c{n^{ - 1/p}}$ for some c. As an application we consider the functional $N(V) = \dim$ (spectral projection on $( - \infty ,0)$ for $- \Delta + V$) on functions V on ${{\mathbf {R}}^n},n \geqslant 3$. We prove that for any $\epsilon > 0:N(V) \leqslant C_\epsilon (\left \| V \right \|_{n/2 + \epsilon } + \left \| V \right \|_{n/2 - \epsilon })^{n/2}$ where ${\left \| \cdot \right \|_p}$ is an ${L^p}$ norm and that ${\lim \nolimits _{\lambda \to \infty }}N(\lambda V)/{\lambda ^{n/2}} = {(2\pi )^{ - n}}{\tau _n}\smallint |{V_ - }(x){|^{n/2}}{d^n}x$ for any $V \in {L^{n/2 - }} \cap {L^{n/2 + }}$. Here ${V_ - }$ is the negative part of V and ${\tau _n}$ is the volume of the unit ball in ${{\mathbf {R}}^n}$.References
- G. Bennett, Some ideals of operators on Hilbert space, Studia Math. 55 (1975/76), no. 1, 27–40. MR 420297, DOI 10.4064/sm-55-1-27-40
- G. Bennett, V. Goodman, and C. M. Newman, Norms of random matrices, Pacific J. Math. 59 (1975), no. 2, 359–365. MR 393085, DOI 10.2140/pjm.1975.59.359
- M. Š. Birman, On the number of eigenvalues in a quantum scattering problem, Vestnik Leningrad. Univ. 16 (1961), no. 13, 163–166 (Russian, with English summary). MR 0139370
- H. J. Brascamp, Elliott H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237. MR 0346109, DOI 10.1016/0022-1236(74)90013-5
- A.-P. Calderón, Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31–34. MR 0147896
- J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839–873. MR 5790, DOI 10.2307/1968771
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- P. Deift and B. Simon, On the decoupling of finite singularities from the question of asymptotic completeness in two body quantum systems, J. Functional Analysis 23 (1976), no. 3, 218–238. MR 0432051, DOI 10.1016/0022-1236(76)90049-5
- Ky Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 760–766. MR 45952, DOI 10.1073/pnas.37.11.760
- William G. Faris, The product formula for semigroups defined by Friedrichs extensions, Pacific J. Math. 22 (1967), 47–70. MR 215132, DOI 10.2140/pjm.1967.22.47
- William G. Faris, Self-adjoint operators, Lecture Notes in Mathematics, Vol. 433, Springer-Verlag, Berlin-New York, 1975. MR 0467348, DOI 10.1007/BFb0068567
- D. J. H. Garling, On ideals of operators in Hilbert space, Proc. London Math. Soc. (3) 17 (1967), 115–138. MR 208398, DOI 10.1112/plms/s3-17.1.115 I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear non-self-adjoint operators in Hilbert space, Izdat. “Nauka", Moscow, 1965; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969. MR 36 #3137; 39 #7447.
- Richard A. Hunt, An extension of the Marcinkiewicz interpolation theorem to Lorentz spaces, Bull. Amer. Math. Soc. 70 (1964), 803–807. MR 169037, DOI 10.1090/S0002-9904-1964-11242-8
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- R. A. Kunze, $L_{p}$ Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc. 89 (1958), 519–540. MR 100235, DOI 10.1090/S0002-9947-1958-0100235-1
- G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37–55. MR 33449, DOI 10.2307/1969496 A. Martin, Bound states in the strong coupling limit, Helv. Phys. Acta 45 (1972), 140-148. M. Reed and B. Simon, Methods of modern mathematical physics. Vol. I: Functional analysis, Academic Press, New York, 1972. —, Methods of modern mathematical physics. Vol. II: Fourier analysis, self-adjointness, Academic Press, New York, 1975. —, Methods of modern mathematical physics. Vol. III: Analysis of operators, Academic Press, New York, (in preparation).
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112, DOI 10.1007/978-3-642-87652-3
- Robert Schatten and John von Neumann, The cross-space of linear transformations. II, Ann. of Math. (2) 47 (1946), 608–630. MR 16533, DOI 10.2307/1969096
- Julian Schwinger, On the bound states of a given potential, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 122–129. MR 129798, DOI 10.1073/pnas.47.1.122
- Erhard Seiler, Schwinger functions for the Yukawa model in two dimensions with space-time cutoff, Comm. Math. Phys. 42 (1975), 163–182. MR 376022, DOI 10.1007/BF01614159
- Erhard Seiler and Barry Simon, Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound, Comm. Math. Phys. 45 (1975), no. 2, 99–114. MR 413886, DOI 10.1007/BF01629241
- Barry Simon, Quantum mechanics for Hamiltonians defined as quadratic forms, Princeton Series in Physics, Princeton University Press, Princeton, N. J., 1971. MR 0455975
- Barry Simon, Notes on infinite determinants of Hilbert space operators, Advances in Math. 24 (1977), no. 3, 244–273. MR 482328, DOI 10.1016/0001-8708(77)90057-3
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031–1060. MR 0215084
- Hideo Tamura, The asymptotic eigenvalue distribution for non-smooth elliptic operators, Proc. Japan Acad. 50 (1974), 19–22. MR 364899
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 224 (1976), 367-380
- MSC: Primary 47F05; Secondary 81.35
- DOI: https://doi.org/10.1090/S0002-9947-1976-0423128-X
- MathSciNet review: 0423128