Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A minimax formula for dual $B^*$-algebras


Author: Pak Ken Wong
Journal: Trans. Amer. Math. Soc. 224 (1976), 281-298
MSC: Primary 46K05
DOI: https://doi.org/10.1090/S0002-9947-1976-0428047-0
MathSciNet review: 0428047
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be a dual ${B^\ast }$-algebra. We give a minimax formula for the positive elements in A. By using this formula and some of its consequent results, we introduce and study the symmetric norms and symmetrically-normed ideals in A.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46K05

Retrieve articles in all journals with MSC: 46K05


Additional Information

Keywords: Dual algebra, <IMG WIDTH="30" HEIGHT="21" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${A^\ast }$">-algebra, <IMG WIDTH="31" HEIGHT="21" ALIGN="BOTTOM" BORDER="0" SRC="images/img2.gif" ALT="${B^\ast }$">-algebra, Hermitian minimal idempotent, symmetrically-normed ideal, symmetric norming function
Article copyright: © Copyright 1976 American Mathematical Society