## A minimax formula for dual $B^*$-algebras

HTML articles powered by AMS MathViewer

- by Pak Ken Wong PDF
- Trans. Amer. Math. Soc.
**224**(1976), 281-298 Request permission

## Abstract:

Let*A*be a dual ${B^\ast }$-algebra. We give a minimax formula for the positive elements in

*A*. By using this formula and some of its consequent results, we introduce and study the symmetric norms and symmetrically-normed ideals in

*A*.

## References

- Bruce Alan Barnes,
*A generalized Fredholm theory for certain maps in the regular representations of an algebra*, Canadian J. Math.**20**(1968), 495–504. MR**232208**, DOI 10.4153/CJM-1968-048-2 - Nelson Dunford and Jacob T. Schwartz,
*Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space*, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR**0188745** - I. C. Gohberg and M. G. Kreĭn,
*Introduction to the theory of linear nonselfadjoint operators*, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR**0246142**, DOI 10.1090/mmono/018 - Alfred Horn,
*On the singular values of a product of completely continuous operators*, Proc. Nat. Acad. Sci. U.S.A.**36**(1950), 374–375. MR**45316**, DOI 10.1073/pnas.36.7.374 - Tôzirô Ogasawara and Kyôichi Yoshinaga,
*Weakly completely continuous Banach $^*$-algebras*, J. Sci. Hiroshima Univ. Ser. A**18**(1954), 15–36. MR**70068** - Charles E. Rickart,
*General theory of Banach algebras*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0115101** - Shôichirô Sakai,
*$C^*$-algebras and $W^*$-algebras*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR**0442701** - Robert Schatten,
*Norm ideals of completely continuous operators*, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR**0119112**, DOI 10.1007/978-3-642-87652-3 - Pak Ken Wong,
*Modular annihilator $A^{\ast }$-algebras*, Pacific J. Math.**37**(1971), 825–834. MR**305083**, DOI 10.2140/pjm.1971.37.825 - Pak Ken Wong,
*On the Arens products and certain Banach algebras*, Trans. Amer. Math. Soc.**180**(1973), 437–448. MR**318885**, DOI 10.1090/S0002-9947-1973-0318885-4 - Pak Ken Wong,
*The $p$-class in a dual $B^{\ast }$-algebra*, Trans. Amer. Math. Soc.**200**(1974), 355–368. MR**358371**, DOI 10.1090/S0002-9947-1974-0358371-X
—,

*On certain subalgebras of a dual*${B^\ast }$-

*algebra*, J. Australian Math. Soc. (to appear).

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**224**(1976), 281-298 - MSC: Primary 46K05
- DOI: https://doi.org/10.1090/S0002-9947-1976-0428047-0
- MathSciNet review: 0428047