A comparison of various definitions of contractive mappings
HTML articles powered by AMS MathViewer
- by B. E. Rhoades
- Trans. Amer. Math. Soc. 226 (1977), 257-290
- DOI: https://doi.org/10.1090/S0002-9947-1977-0433430-4
- PDF | Request permission
Abstract:
A number of authors have defined contractive type mappings on a complete metric space X which are generalizations of the well-known Banach contraction, and which have the property that each such mapping has a unique fixed point. The fixed point can always be found by using Picard iteration, beginning with some initial choice ${x_0} \in X$. In this paper we compare this multitude of definitions. X denotes a complete metric space with distance function d, and f a function mapping X into itself.References
- D. F. Bailey, Some theorems on contractive mappings, J. London Math. Soc. 41 (1966), 101–106. MR 189007, DOI 10.1112/jlms/s1-41.1.101
- L. P. Belluce and W. A. Kirk, Fixed-point theorems for certain classes of nonexpansive mappings, Proc. Amer. Math. Soc. 20 (1969), 141–146. MR 233341, DOI 10.1090/S0002-9939-1969-0233341-4
- Rosa Maria Tiberio Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. (4) 5 (1972), 103–108 (Italian, with English summary). MR 0308875
- D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464. MR 239559, DOI 10.1090/S0002-9939-1969-0239559-9
- S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727–730. MR 324493
- S. K. Chatterjea, Fixed point theorems for a sequence of mappings with contractive iterates, Publ. Inst. Math. (Beograd) (N.S.) 14(28) (1972), 15–18. MR 397700
- Ljubomir B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N.S.) 12(26) (1971), 19–26. MR 309092
- Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273. MR 356011, DOI 10.1090/S0002-9939-1974-0356011-2
- Michael Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7–10. MR 120625, DOI 10.1090/S0002-9939-1961-0120625-6
- M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74–79. MR 133102, DOI 10.1112/jlms/s1-37.1.74
- K. Goebel, W. A. Kirk, and Tawfik N. Shimi, A fixed point theorem in uniformly convex spaces, Boll. Un. Mat. Ital. (4) 7 (1973), 67–75 (English, with Italian summary). MR 0320834
- Pramila Srivastava and Vijay Kumar Gupta, A note on common fixed points, Yokohama Math. J. 19 (1971), no. 2, 91–95. MR 410720
- Vijay Kumar Gupta and Pramila Srivastava, On common fixed points, Rev. Roumaine Math. Pures Appl. 17 (1972), 531–538. MR 305157
- L. F. Guseman Jr., Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 26 (1970), 615–618. MR 266010, DOI 10.1090/S0002-9939-1970-0266010-3
- G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201–206. MR 324495, DOI 10.4153/CMB-1973-036-0
- Kiyoshi Iséki, On common fixed points of mappings, Bull. Austral. Math. Soc. 10 (1974), 365–370. MR 356014, DOI 10.1017/S0004972700041058
- R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71–76. MR 257837
- R. Kannan, Some results on fixed points. II, Amer. Math. Monthly 76 (1969), 405–408. MR 257838, DOI 10.2307/2316437
- Silvio Massa, Un’osservazione su un teorema di Browder-Roux-Soardi, Boll. Un. Mat. Ital. (4) 7 (1973), 151–155 (Italian, with English summary). MR 0315531
- Nicolae Mureşan, Families of mappings and fixed points, Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 19 (1974), no. 1, 13–15 (Romanian, with English and Russian summaries). MR 341463
- E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465. MR 148046, DOI 10.1090/S0002-9939-1962-0148046-1
- Baidyanath Ray, Some results on fixed points and their continuity, Colloq. Math. 27 (1973), 41–48. MR 336728, DOI 10.4064/cm-27-1-41-48
- Barada K. Ray, On non-expansive mappings in a metric space, Nanta Math. 7 (1974), no. 1, 86–92. MR 383165
- Simeon Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121–124. MR 292057, DOI 10.4153/CMB-1971-024-9
- Simeon Reich, Kannan’s fixed point theorem, Boll. Un. Mat. Ital. (4) 4 (1971), 1–11. MR 0305163
- Simeon Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26–42 (English, with Italian summary). MR 0309095
- Simeon Reich, Remarks on fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 52 (1972), 689–697 (English, with Italian summary). MR 331139
- Delfina Roux and Paolo Soardi, Alcune generalizzazioni del teorema di Browder-Göhde-Kirk, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 52 (1972), 682–688 (Italian, with English summary). MR 326512
- Ioan A. Rus, On common fixed points, Studia Univ. Babeş-Bolyai Ser. Math.-Mech. 18 (1973), no. 1, 31–33 (English, with Romanian and Russian summaries). MR 336729 M. Seelbach, Some common fixed point theorems for compact metric spaces, Notices Amer. Math. Soc. 21 (1974), A-179. Abstract #711-46-23.
- V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc. (2) 5 (1972), 571–576. MR 319176, DOI 10.1112/jlms/s2-5.3.571
- S. P. Singh, Some results on fixed point theorems, Yokohama Math. J. 17 (1969), 61–64. MR 257839
- Paolo Soardi, Su un problema di punto unito di S. Reich, Boll. Un. Mat. Ital. (4) 4 (1971), 841–845 (Italian, with English summary). MR 0301583
- Chi Song Wong, Common fixed points of two mappings, Pacific J. Math. 48 (1973), 299–312. MR 328903, DOI 10.2140/pjm.1973.48.299
- Chi Lin Yen, Remark on common fixed points, Tamkang J. Math. 3 (1972), 95–96. MR 322845
- Tudor Zamfirescu, A theorem on fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 52 (1972), 832–834 (1973) (English, with Italian summary). MR 328904
- Tudor Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel) 23 (1972), 292–298. MR 310859, DOI 10.1007/BF01304884
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 226 (1977), 257-290
- MSC: Primary 54H25
- DOI: https://doi.org/10.1090/S0002-9947-1977-0433430-4
- MathSciNet review: 0433430