Inverting a cylinder through isometric immersions and isometric embeddings
HTML articles powered by AMS MathViewer
- by B. Halpern and C. Weaver
- Trans. Amer. Math. Soc. 230 (1977), 41-70
- DOI: https://doi.org/10.1090/S0002-9947-1977-0474388-1
- PDF | Request permission
Abstract:
It is shown that a right circular cylinder can be turned inside out through immersions which preserve its flat Riemannian metric if and only if its diameter is greater than its height. Such a cylinder can be turned inside out through embeddings which preserve its flat Riemannian metric provided its diameter is greater than $(\pi + 2)/\pi$ times its height. A flat Möbius strip has an immersion into Euclidean three dimensional space which preserves its Riemannian metric if and only if its length is greater than $\pi /2$ times its height.References
- S. Barr, Experiments in topology, Crowell, New York, 1964.
- Shiing-shen Chern and Richard K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306–318. MR 84811, DOI 10.2307/2372684
- Samuel Eilenberg and Deane Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 214–222. MR 16676, DOI 10.2307/2371832
- M. L. Gromov and V. A. Rohlin, Imbeddings and immersions in Riemannian geometry, Uspehi Mat. Nauk 25 (1970), no. 5 (155), 3–62 (Russian). MR 0290390
- Philip Hartman and Louis Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901–920. MR 126812, DOI 10.2307/2372995
- Detlef Laugwitz, Differential and Riemannian geometry, Academic Press, New York-London, 1965. Translated by Fritz Steinhardt. MR 0172184 M. Sadowsky, Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiusschen Bands und Zurückführung des geometrischen Problems auf ein Variationsproblem, Sitzgber. Preuss. Akad. Wiss. 22 (1930), 412-415.
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- J. J. Stoker, Differential geometry, Pure and Applied Mathematics, Vol. XX, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1969. MR 0240727
- Hassler Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276–284. MR 1556973
- W. Wunderlich, Über ein abwickelbares Möbiusband, Monatsh. Math. 66 (1962), 276–289 (German). MR 143115, DOI 10.1007/BF01299052
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 230 (1977), 41-70
- MSC: Primary 58D10; Secondary 57D40
- DOI: https://doi.org/10.1090/S0002-9947-1977-0474388-1
- MathSciNet review: 0474388