On $n$-widths in $L^{\infty }$
HTML articles powered by AMS MathViewer
- by Charles A. Micchelli and Allan Pinkus
- Trans. Amer. Math. Soc. 234 (1977), 139-174
- DOI: https://doi.org/10.1090/S0002-9947-1977-0487187-1
- PDF | Request permission
Abstract:
The n-width in ${L^\infty }$ of certain sets determined by matrices and integral operators is determined. The notion of total positivity is essential in the analysis.References
- Charles K. Chui and Philip W. Smith, Some nonlinear spline approximation problems related to $N$-widths, J. Approximation Theory 13 (1975), 421–430. MR 370023, DOI 10.1016/0021-9045(75)90025-8
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- Samuel Karlin and Allan Pinkus, Oscillation properties of generalized characteristic polynomials for totally positive and positive definite matrices, Linear Algebra Appl. 8 (1974), 281–312. MR 342538, DOI 10.1016/0024-3795(74)90056-1
- Samuel Karlin and Allan Pinkus, Interpolation by splines with mixed boundary conditions, Studies in spline functions and approximation theory, Academic Press, New York, 1976, pp. 305–325. MR 0481731
- A. Kolmogoroff, Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse, Ann. of Math. (2) 37 (1936), no. 1, 107–110 (German). MR 1503273, DOI 10.2307/1968691
- Avraham A. Melkman, Interpolation by splines satisfying mixed boundary conditions, Israel J. Math. 19 (1974), 369–381. MR 372475, DOI 10.1007/BF02757500
- Charles A. Micchelli, Best $L^{1}$ approximation by weak Chebyshev systems and the uniqueness of interpolating perfect splines, J. Approximation Theory 19 (1977), no. 1, 1–14. MR 454479, DOI 10.1016/0021-9045(77)90024-7
- Samuel Karlin, Charles A. Micchelli, Allan Pinkus, and I. J. Schoenberg (eds.), Studies in spline functions and approximation theory, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0393934
- Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044, DOI 10.1007/978-3-662-41583-2
- V. M. Tihomirov, Best methods of approximation and interpolation of differentiable functions in the space $C[-1,\,1].$, Mat. Sb. (N.S.) 80 (122) (1969), 290–304 (Russian). MR 0256043
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 234 (1977), 139-174
- MSC: Primary 41A45
- DOI: https://doi.org/10.1090/S0002-9947-1977-0487187-1
- MathSciNet review: 0487187