## Coordinatization applied to finite Baer * rings

HTML articles powered by AMS MathViewer

- by David Handelman PDF
- Trans. Amer. Math. Soc.
**235**(1978), 1-34 Request permission

## Abstract:

We clarify and algebraicize the construction of the ’regular rings’ of finite Baer $^\ast$ rings. We first determine necessary and sufficient conditions of a finite Baer $^\ast$ ring so that its maximal ring of right quotients is the ’regular ring’, coordinating the projection lattice. This is applied to yield significant improvements on previously known results: If*R*is a finite Baer $^\ast$ ring with right projections $^\ast$-equivalent to left projections $({\text {LP}} \sim {\text {RP}})$, and is either of type II or has 4 or more equivalent orthogonal projections adding to 1, then all matrix rings over

*R*are finite Baer $^\ast$ rings, and they also satisfy ${\text {LP}} \sim {\text {RP}}$; if

*R*is a

*real*$A{W^\ast }$ algebra without central abelian projections, then all matrix rings over

*R*are also $A{W^\ast }$. An alternate approach to the construction of the ’regular ring’ is via the Coordinatization Theorem of von Neumann. This is discussed, and it is shown that if a Baer $^\ast$ ring without central abelian projections

*has*a ’regular ring’, the ’regular ring’ must be the maximal ring of quotients. The following result comes out of this approach: A finite Baer $^\ast$ ring satisfying the ’square root’ (SR) axiom, and either of type II or possessing 4 or more equivalent projections as above, satisfies ${\text {LP}} \sim {\text {RP}}$, and so the results above apply. We employ some recent results of J. Lambek on epimorphisms of rings. Some incidental theorems about the existence of faithful epimorphic regular extensions of semihereditary rings also come out.

## References

- S. K. Berberian,
*$N\times N$ matrices over an $AW^{\ast }$-algebra*, Amer. J. Math.**80**(1958), 37–44. MR**98329**, DOI 10.2307/2372820
—, - John L. Burke,
*On the property $(\textrm {PU})$ for $*$-regular rank rings*, Canad. Math. Bull.**19**(1976), no. 1, 21–38. MR**417232**, DOI 10.4153/CMB-1976-004-x - Vasily C. Cateforis,
*Flat regular quotient rings*, Trans. Amer. Math. Soc.**138**(1969), 241–249. MR**238899**, DOI 10.1090/S0002-9947-1969-0238899-1
K. R. Goodearl, D. Handelman and J. Lawrence, - Izidor Hafner,
*The regular ring and the maximal ring of quotients of a finite Baer $^{\ast }$-ring*, Michigan Math. J.**21**(1974), 153–160. MR**342552**
D. Handelman, - David Handelman,
*Perspectivity and cancellation in regular rings*, J. Algebra**48**(1977), no. 1, 1–16. MR**447329**, DOI 10.1016/0021-8693(77)90289-7 - David Handelman,
*Completions of rank rings*, Canad. Math. Bull.**20**(1977), no. 2, 199–205. MR**472898**, DOI 10.4153/CMB-1977-032-3 - John R. Isbell,
*Epimorphisms and dominions*, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 232–246. MR**0209202** - Bjarni Jónsson,
*Representations of complemented modular lattices*, Trans. Amer. Math. Soc.**97**(1960), 64–94. MR**120175**, DOI 10.1090/S0002-9947-1960-0120175-0 - Irving Kaplansky,
*Any orthocomplemented complete modular lattice is a continuous geometry*, Ann. of Math. (2)**61**(1955), 524–541. MR**88476**, DOI 10.2307/1969811 - Irving Kaplansky,
*Rings of operators*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0244778** - Joachim Lambek,
*Lectures on rings and modules*, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR**0206032** - Joachim Lambek,
*Localization at epimorphisms and quasi-injectives*, J. Algebra**38**(1976), no. 1, 163–181. MR**453793**, DOI 10.1016/0021-8693(76)90252-0 - Shuichiro Maeda and Samuel S. Holland Jr.,
*Equivalence of projections in Baer $^*$-rings*, J. Algebra**39**(1976), no. 1, 150–159. MR**404319**, DOI 10.1016/0021-8693(76)90067-3 - John von Neumann,
*Continuous geometry*, Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960. Foreword by Israel Halperin. MR**0120174** - N. Prijatelj and I. Vidav,
*On special $^{\ast }$-regular rings*, Michigan Math. J.**18**(1971), 213–221. MR**283024** - Ernest S. Pyle,
*The regular ring and the maximal ring of quotients of a finite Baer $^{\ast }$-ring*, Trans. Amer. Math. Soc.**203**(1975), 201–213. MR**364338**, DOI 10.1090/S0002-9947-1975-0364338-9
J.-E. Roos, - Bo Stenström,
*Rings and modules of quotients*, Lecture Notes in Mathematics, Vol. 237, Springer-Verlag, Berlin-New York, 1971. MR**0325663** - Yuzo Utumi,
*On the continuity and self-injectivity of a complete regular ring*, Canadian J. Math.**18**(1966), 404–412. MR**223409**, DOI 10.4153/CJM-1966-043-5 - Yuzo Utumi,
*On continuous rings and self injective rings*, Trans. Amer. Math. Soc.**118**(1965), 158–173. MR**174592**, DOI 10.1090/S0002-9947-1965-0174592-8 - Y. Utumi,
*On rings of which any one-sided quotient rings are two-sided*, Proc. Amer. Math. Soc.**14**(1963), 141–147. MR**142568**, DOI 10.1090/S0002-9939-1963-0142568-6 - Ivan Vidav,
*On some $^*$regular rings*, Acad. Serbe Sci. Publ. Inst. Math.**13**(1959), 73–80. MR**126735**

*Baer*$^\ast$-

*rings*, Grundlehren math. Wiss., Band 195, Springer-Verlag, New York, 1972.

*Strongly prime and completely torsion free rings*, Carleton Math. Lecture Notes, no. 109, Carleton Univ., Ottawa, Canada, 1974.

*Strongly prime, simple self-infective, and completely torsion-free rings*, Ph. D. Dissertation, McGill Univ.,1975.

*Sur l’anneau maximal de fractions des*$A{W^\ast }$-

*algebres et des anneaux de Baer*, C. R. Acad. Sci. Paris Sér. A-B

**266**(1968), A120-A123. MR

**39**#6093.

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**235**(1978), 1-34 - MSC: Primary 16A28
- DOI: https://doi.org/10.1090/S0002-9947-1978-0463230-1
- MathSciNet review: 0463230