Projective modules over Laurent polynomial rings
Author:
Richard G. Swan
Journal:
Trans. Amer. Math. Soc. 237 (1978), 111-120
MSC:
Primary 13C10; Secondary 13F20, 14F05
DOI:
https://doi.org/10.1090/S0002-9947-1978-0469906-4
MathSciNet review:
0469906
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Quillen’s solution of Serre’s problem is extended to Laurent polynomial rings. An example is given of a $A[T,{T^{ - 1}}]$-module P which is not extended even though A is regular and ${P_\mathfrak {m}}$ is extended for all maximal ideals $\mathfrak {m}$ of A.
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Hyman Bass, Some problems in “classical” algebraic $K$-theory, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 3–73. Lecture Notes in Math., Vol. 342. MR 0409606
- Hyman Bass, Libération des modules projectifs sur certains anneaux de polynômes, Séminaire Bourbaki, 26e année (1973/1974), Exp. No. 448, Springer, Berlin, 1975, pp. 228–354. Lecture Notes in Math., Vol. 431 (French). MR 0472826
- A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409–448 (French). MR 58213, DOI https://doi.org/10.2307/2372495
- Jean-Louis Loday, Applications algébriques du tore dans la sphère et de $S^{p}\times S^{q}$ dans $S^{p+q}$, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Seattle Res. Center, Battelle Memorial Inst., 1972) Springer, Berlin, 1973, pp. 79–91. Lecture Notes in Mathematics, Vol. 342 (French). MR 0368034
- M. Pavaman Murthy, Projective $A[X]$-modules, J. London Math. Soc. 41 (1966), 453–456. MR 200289, DOI https://doi.org/10.1112/jlms/s1-41.1.453
- Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171. MR 427303, DOI https://doi.org/10.1007/BF01390008
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Richard G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277. MR 143225, DOI https://doi.org/10.1090/S0002-9947-1962-0143225-6
- Anthony V. Geramita (ed.), Conference on Commutative Algebra—1975, Queen’s University, Kingston, Ont., 1975. Held at Queen’s University, Kingston, Ont., July 7–11, 1975; Queen’s Papers on Pure and Applied Mathematics, No. 42. MR 0384769
- Richard G. Swan and Jacob Towber, A class of projective modules which are nearly free, J. Algebra 36 (1975), no. 3, 427–434. MR 376682, DOI https://doi.org/10.1016/0021-8693%2875%2990143-X
Retrieve articles in Transactions of the American Mathematical Society with MSC: 13C10, 13F20, 14F05
Retrieve articles in all journals with MSC: 13C10, 13F20, 14F05
Additional Information
Keywords:
Projective modules,
Laurent polynomial rings,
Serre’s problem
Article copyright:
© Copyright 1978
American Mathematical Society