Logarithmic Sobolev inequalities for the heat-diffusion semigroup

Author:
Fred B. Weissler

Journal:
Trans. Amer. Math. Soc. **237** (1978), 255-269

MSC:
Primary 47D05; Secondary 46E35

DOI:
https://doi.org/10.1090/S0002-9947-1978-0479373-2

MathSciNet review:
479373

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit formula relating the Hermite semigroup ${e^{ - tH}}$ on *R* with Gauss measure and the heat-diffusion semigroup ${e^{t\Delta }}$ on *R* with Lebesgue measure is proved. From this formula it follows that Nelson’s hypercontractive estimates for ${e^{ - tH}}$ are equivalent to the best norm estimates for ${e^{t\Delta }}$ as a map ${L^q}(R)$ into ${L^p}(R),1 < q < p < \infty$. Furthermore,the inequality \[ \frac {d}{{dq}}\log \left \| \phi \right \|_q^q \leqslant \frac {n}{{2q}}\log \left [ {\frac {{{q^2}}}{{2\pi ne(q - 1)}} \cdot \frac {{\operatorname {Re} \langle - \Delta \phi ,{J^q}\phi \rangle }}{{\left \| \phi \right \|_q^q}}} \right ] + \log {\left \| \phi \right \|_q},\] where $1 < q < \infty ,{J^q}\phi = (\operatorname {sgn} \phi )|\phi {|^{q - 1}}$, and the norms and sesquilinear form $\langle ,\rangle$ are taken with respect to Lebesgue measure on ${R^n}$, is shown to be equivalent to the best norm estimates for ${e^{t\Delta }}$ as a map from ${L^q}({R^n})$ into ${L^p}({R^n})$. This inequality is analogous to Gross’ logarithmic Sobolev inequality. Also, the above inequality is compared with a classical Sobolev inequality.

- William Beckner,
*Inequalities in Fourier analysis*, Ann. of Math. (2)**102**(1975), no. 1, 159–182. MR**385456**, DOI https://doi.org/10.2307/1970980 - Herm Jan Brascamp and Elliott H. Lieb,
*Best constants in Young’s inequality, its converse, and its generalization to more than three functions*, Advances in Math.**20**(1976), no. 2, 151–173. MR**412366**, DOI https://doi.org/10.1016/0001-8708%2876%2990184-5 - Leonard Gross,
*Logarithmic Sobolev inequalities*, Amer. J. Math.**97**(1975), no. 4, 1061–1083. MR**420249**, DOI https://doi.org/10.2307/2373688
S. Mazur, - Edward Nelson,
*The free Markoff field*, J. Functional Analysis**12**(1973), 211–227. MR**0343816**, DOI https://doi.org/10.1016/0022-1236%2873%2990025-6 - H. L. Royden,
*Real analysis*, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR**0151555**

*Über schwache Konvergence in den Räumen*(${L^p}$), Studia Math.

**4**(1933), 128-133.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47D05,
46E35

Retrieve articles in all journals with MSC: 47D05, 46E35

Additional Information

Keywords:
Logarithmic Sobolev inequalities,
heat-diffusion semigroup,
Hermite semigroup,
hypercontractivity

Article copyright:
© Copyright 1978
American Mathematical Society