## Nonlinear operations and the solution of integral equations

HTML articles powered by AMS MathViewer

- by Jon C. Helton PDF
- Trans. Amer. Math. Soc.
**237**(1978), 373-390 Request permission

## Abstract:

The letters*S, G*and

*H*denote a linearly ordered set, a normed complete Abelian group with zero element 0, and the set of functions from

*G*to

*G*that map 0 into 0, respectively. In addition, if $V \in H$ and there exists an additive function $\alpha$ from $S \times S$ to the nonnegative numbers such that $\left \| {V(x,y)P - V(x,y)Q} \right \| \leqslant \alpha (x,y)\left \| {P - Q} \right \|$ for each $\{ x,y,P,Q\}$ in $S \times S \times G \times G$, then $V \in \mathcal {O}\mathcal {S}$ only if $\smallint _x^yVP$ exists for each $\{ x,y,P\}$ in $S \times S \times G$, and $V \in \mathcal {O}\mathcal {P}$ only if $_x{\Pi ^y}(1 + V)P$ exists for each $\{ x,y,P\}$ in $S \times S \times G$. It is established that $V \in \mathcal {O}\mathcal {S}$ if, and only if, $V \in \mathcal {O}\mathcal {P}$. Then, this relationship is used in the solution of integral equations of the form $f(x) = h(x) + \smallint _c^x[U(u,v)f(u) + V(u,v)f(v)]$, where

*U*and

*V*are in $\mathcal {O}\mathcal {S}$. This research extends known results in that requirements pertaining to the additivity of

*U*and

*V*are weakened.

## References

- William D. L. Appling,
*Interval functions and real Hilbert spaces*, Rend. Circ. Mat. Palermo (2)**11**(1962), 154–156. MR**154081**, DOI 10.1007/BF02843951 - Burrell W. Helton,
*Integral equations and product integrals*, Pacific J. Math.**16**(1966), 297–322. MR**188731** - Jon C. Helton,
*An existence theorem for sum and product integrals*, Proc. Amer. Math. Soc.**39**(1973), 149–154. MR**317048**, DOI 10.1090/S0002-9939-1973-0317048-1 - Jon C. Helton,
*Mutual existence of sum and product integrals*, Pacific J. Math.**56**(1975), no. 2, 495–516. MR**405098** - Jon C. Helton,
*Product integrals and the solution of integral equations*, Pacific J. Math.**58**(1975), no. 1, 87–103. MR**385480** - Jon C. Helton,
*Existence of integrals and the solution of integral equations*, Trans. Amer. Math. Soc.**229**(1977), 307–327. MR**445245**, DOI 10.1090/S0002-9947-1977-0445245-1 - Jon Helton and Stephen Stuckwisch,
*Numerical approximation of product integrals*, J. Math. Anal. Appl.**56**(1976), no. 2, 410–437. MR**428688**, DOI 10.1016/0022-247X(76)90053-6 - J. V. Herod,
*Coalescence of solutions for nonlinear Stieltjes equations*, J. Reine Angew. Math.**252**(1972), 187–194. MR**291908**, DOI 10.1515/crll.1972.252.187 - Alvin J. Kay,
*Nonlinear integral equations and product integrals*, Pacific J. Math.**60**(1975), no. 1, 203–222. MR**399781** - J. S. MacNerney,
*Integral equations and semigroups*, Illinois J. Math.**7**(1963), 148–173. MR**144179** - J. S. MacNerney,
*A nonlinear integral operation*, Illinois J. Math.**8**(1964), 621–638. MR**167815** - P. R. Masani,
*Multiplicative Riemann integration in normed rings*, Trans. Amer. Math. Soc.**61**(1947), 147–192. MR**18719**, DOI 10.1090/S0002-9947-1947-0018719-6 - J. W. Neuberger,
*Toward a characterization of the identity component of rings and near-rings of continuous transformations*, J. Reine Angew. Math.**238**(1969), 100–104. MR**250144**, DOI 10.1515/crll.1969.238.100

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**237**(1978), 373-390 - MSC: Primary 45N05; Secondary 46G99, 47H99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0479379-3
- MathSciNet review: 479379