## The commutant of an analytic Toeplitz operator

HTML articles powered by AMS MathViewer

- by Carl C. Cowen PDF
- Trans. Amer. Math. Soc.
**239**(1978), 1-31 Request permission

## Abstract:

For a function*f*in ${H^\infty }$ of the unit disk, the operator on ${H^2}$ of multiplication by

*f*will be denoted by ${T_f}$ and its commutant by $\{ {T_f}\} ’$. For a finite Blaschke product

*B*, a representation of an operator in ${\{ {T_B}\}’}$ as a function on the Riemann surface of ${B^{ - 1}} \circ B$ motivates work on more general functions. A theorem is proved which gives conditions on a family $\mathcal {F}$ of ${H^\infty }$ functions which imply that there is a function

*h*such that $\{ {T_h}\} ’ = { \cap _{f \in \mathcal {F}}}\{ {T_f}\} ’$. As a special case of this theorem, we find that if the inner factor of $f - f(c)$ is a finite Blaschke product for some

*c*in the disk, then there is a finite Blaschke product

*B*with $\{ {T_f}\} ’ = \{ {T_B}\} ’$. Necessary and sufficient conditions are given for an operator to commute with ${T_f}$ when

*f*is a covering map (in the sense of Riemann surfaces). If

*f*and

*g*are in ${H^\infty }$ and $f = h \circ g$, then $\{ {T_f}\} ’ \supset \{ {T_g}\} ’$. This paper introduces a class of functions, the ${H^2}$-ancestral functions, for which the converse is true. If

*f*and

*g*are ${H^2}$-ancestral functions, then $\{ {T_f}\} ’ \ne \{ {T_g}\} ’$ unless $f = h \circ g$ where

*h*is univalent. It is shown that inner functions and covering maps are ${H^2}$-ancestral functions, although these do not exhaust the class. Two theorems are proved, each giving conditions on a function

*f*which imply that ${T_f}$ does not commute with nonzero compact operators. It follows from one of these results that if

*f*is an ${H^2}$-ancestral function, then ${T_f}$ does not commute with any nonzero compact operators.

## References

- M. B. Abrahamse,
*Analytic Toeplitz operators with automorphic symbol*, Proc. Amer. Math. Soc.**52**(1975), 297–302. MR**405156**, DOI 10.1090/S0002-9939-1975-0405156-8 - M. B. Abrahamse and Joseph A. Ball,
*Analytic Toeplitz operators with automorphic symbol. II*, Proc. Amer. Math. Soc.**59**(1976), no. 2, 323–328. MR**454714**, DOI 10.1090/S0002-9939-1976-0454714-4 - I. N. Baker, James A. Deddens, and J. L. Ullman,
*A theorem on entire functions with applications to Toeplitz operators*, Duke Math. J.**41**(1974), 739–745. MR**355046**, DOI 10.1215/S0012-7094-74-04177-5 - James A. Deddens and Tin Kin Wong,
*The commutant of analytic Toeplitz operators*, Trans. Amer. Math. Soc.**184**(1973), 261–273. MR**324467**, DOI 10.1090/S0002-9947-1973-0324467-0 - Kenneth Hoffman,
*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0133008** - Eric A. Nordgren,
*Composition operators*, Canadian J. Math.**20**(1968), 442–449. MR**223914**, DOI 10.4153/CJM-1968-040-4 - Carl Pearcy and Allen L. Shields,
*A survey of the Lomonosov technique in the theory of invariant subspaces*, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 219–229. MR**0355639** - Walter Rudin,
*A generalization of a theorem of Frostman*, Math. Scand.**21**(1967), 136–143 (1968). MR**235151**, DOI 10.7146/math.scand.a-10853 - John V. Ryff,
*Subordinate $H^{p}$ functions*, Duke Math. J.**33**(1966), 347–354. MR**192062** - H. S. Shapiro and A. L. Shields,
*On some interpolation problems for analytic functions*, Amer. J. Math.**83**(1961), 513–532. MR**133446**, DOI 10.2307/2372892 - A. L. Shields and L. J. Wallen,
*The commutants of certain Hilbert space operators*, Indiana Univ. Math. J.**20**(1970/71), 777–788. MR**287352**, DOI 10.1512/iumj.1971.20.20062 - James E. Thomson,
*Intersections of commutants of analytic Toeplitz operators*, Proc. Amer. Math. Soc.**52**(1975), 305–310. MR**399927**, DOI 10.1090/S0002-9939-1975-0399927-4 - James E. Thomson,
*The commutants of certain analytic Toeplitz operators*, Proc. Amer. Math. Soc.**54**(1976), 165–169. MR**388156**, DOI 10.1090/S0002-9939-1976-0388156-7 - James E. Thomson,
*The commutant of a class of analytic Toeplitz operators*, Amer. J. Math.**99**(1977), no. 3, 522–529. MR**461196**, DOI 10.2307/2373929 - James Thomson,
*The commutant of a class of analytic Toeplitz operators. II*, Indiana Univ. Math. J.**25**(1976), no. 8, 793–800. MR**417843**, DOI 10.1512/iumj.1976.25.25063 - William A. Veech,
*A second course in complex analysis*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0220903** - E. L. Stout,
*Bounded holomorphic functions on finite Reimann surfaces*, Trans. Amer. Math. Soc.**120**(1965), 255–285. MR**183882**, DOI 10.1090/S0002-9947-1965-0183882-4

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**239**(1978), 1-31 - MSC: Primary 47B35; Secondary 30A78
- DOI: https://doi.org/10.1090/S0002-9947-1978-0482347-9
- MathSciNet review: 0482347