Operators with small self-commutators
HTML articles powered by AMS MathViewer
- by J. W. Del Valle
- Trans. Amer. Math. Soc. 240 (1978), 183-194
- DOI: https://doi.org/10.1090/S0002-9947-1978-0477874-4
- PDF | Request permission
Abstract:
Let A be a bounded operator on a Hilbert space H. The self-commutator of A, denoted [A], is ${A^\ast }A - A{A^\ast }$. An operator is of commutator rank n if the rank of [A] is n. In this paper operators of commutator rank one are studied. Two particular subclasses are investigated in detail. First, completely nonnormal operators of commutator rank one for which ${A^\ast }A$ and $A{A^\ast }$ commute are completely characterized. They are shown to be special types of simple weighted shifts. Next, operators of commutator rank one for which $\{ {A^n}e\} _{n = 0}^\infty$ is an orthogonal sequence (where e is a generator of the range of [A]) are characterized as a type of weighted operator shift.References
- J. W. Del Valle, A structure theory for operators of commutator rank two (to appear).
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Paul R. Halmos, Finite-dimensional vector spaces, The University Series in Undergraduate Mathematics, D. Van Nostrand Co., Inc., Princeton-Toronto-New York-London, 1958. 2nd ed. MR 0089819 R. L. Kelley, Weighted shifts on Hilbert space, Ph.D. Thesis, Univ. of Michigan, 1966.
- Walter Koppelman, Spectral multiplicity theory for a class of singular integral operators, Trans. Amer. Math. Soc. 113 (1964), 87–100. MR 164256, DOI 10.1090/S0002-9947-1964-0164256-8
- Bernard B. Morrel, A decomposition for some operators, Indiana Univ. Math. J. 23 (1973/74), 497–511. MR 343079, DOI 10.1512/iumj.1973.23.23042
- Joel David Pincus, Commutators, generalized eigenfunction expansions and singular integral operators, Trans. Amer. Math. Soc. 121 (1966), 358–377. MR 188796, DOI 10.1090/S0002-9947-1966-0188796-2
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618, DOI 10.1007/978-3-642-85938-0
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Marvin Rosenblum, A spectral theory for self-adjoint singular integral operators, Amer. J. Math. 88 (1966), 314–328. MR 198294, DOI 10.2307/2373195
- Dao-xeng Xa, On non-normal operators. I, Chinese Math. 3 (1962), 232–246. MR 149283
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 240 (1978), 183-194
- MSC: Primary 47B47; Secondary 47A65
- DOI: https://doi.org/10.1090/S0002-9947-1978-0477874-4
- MathSciNet review: 0477874