## Classifying open principal fibrations

HTML articles powered by AMS MathViewer

- by David A. Edwards and Harold M. Hastings PDF
- Trans. Amer. Math. Soc.
**240**(1978), 213-220 Request permission

## Abstract:

Let*G*be a compact metric group. We shall construct classifying spaces for open principal

*G*-fibrations over compact metric spaces.

## References

- Joel M. Cohen,
*Inverse limits of principal fibrations*, Proc. London Math. Soc. (3)**27**(1973), 178–192. MR**328924**, DOI 10.1112/plms/s3-27.1.178 - Albrecht Dold and Richard Lashof,
*Principal quasi-fibrations and fibre homotopy equivalence of bundles*, Illinois J. Math.**3**(1959), 285–305. MR**101521** - David A. Edwards and Harold M. Hastings,
*Čech and Steenrod homotopy theories with applications to geometric topology*, Lecture Notes in Mathematics, Vol. 542, Springer-Verlag, Berlin-New York, 1976. MR**0428322**, DOI 10.1007/BFb0081083 - A. M. Gleason,
*Spaces with a compact Lie group of transformations*, Proc. Amer. Math. Soc.**1**(1950), 35–43. MR**33830**, DOI 10.1090/S0002-9939-1950-0033830-7 - Harold M. Hastings,
*Simplicial topological resolutions*, Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress (Dalhousie Univ., Halifax, N.S., 1971) Canad. Math. Congr., Montreal, Que., 1972, pp. 66–77. MR**0375313** - Dale Husemoller,
*Fibre bundles*, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR**0229247**, DOI 10.1007/978-1-4757-4008-0 - Saunders Mac Lane,
*The Milgram bar construction as a tensor product of functors*, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 135–152. MR**0273618** - J. Peter May,
*Simplicial objects in algebraic topology*, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0222892** - J. Peter May,
*Classifying spaces and fibrations*, Mem. Amer. Math. Soc.**1**(1975), no. 1, 155, xiii+98. MR**370579**, DOI 10.1090/memo/0155 - R. James Milgram,
*The bar construction and abelian $H$-spaces*, Illinois J. Math.**11**(1967), 242–250. MR**208595** - John Milnor,
*Construction of universal bundles. II*, Ann. of Math. (2)**63**(1956), 430–436. MR**77932**, DOI 10.2307/1970012 - John Milnor,
*The geometric realization of a semi-simplicial complex*, Ann. of Math. (2)**65**(1957), 357–362. MR**84138**, DOI 10.2307/1969967 - L. S. Pontryagin,
*Topological groups*, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. Translated from the second Russian edition by Arlen Brown. MR**0201557** - Norman Steenrod,
*The Topology of Fibre Bundles*, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR**0039258**, DOI 10.1515/9781400883875 - N. E. Steenrod,
*A convenient category of topological spaces*, Michigan Math. J.**14**(1967), 133–152. MR**210075**, DOI 10.1307/mmj/1028999711 - N. E. Steenrod,
*Milgram’s classifying space of a topological group*, Topology**7**(1968), 349–368. MR**233353**, DOI 10.1016/0040-9383(68)90012-8 - Graeme Segal,
*Classifying spaces and spectral sequences*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 105–112. MR**232393**, DOI 10.1007/BF02684591

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**240**(1978), 213-220 - MSC: Primary 55F35
- DOI: https://doi.org/10.1090/S0002-9947-1978-0478153-1
- MathSciNet review: 0478153