Canonical subgroups of formal groups
HTML articles powered by AMS MathViewer
- by Jonathan Lubin
- Trans. Amer. Math. Soc. 251 (1979), 103-127
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531971-4
- PDF | Request permission
Abstract:
Let R be a complete local domain of mixed characteristic. This paper gives a complete answer to the question: “If F is a one-dimensional formal group over R of finite height, when is there a canonical morphism $F \to {F’}$ that lifts Frobenius?” For given height h, a universal family of formal groups F with such a morphism is constructed, and the shape of ${F’}$ is described for small values of h.References
- A. Fröhlich, Formal groups, Lecture Notes in Mathematics, No. 74, Springer-Verlag, Berlin-New York, 1968. MR 0242837, DOI 10.1007/BFb0074373 M. Demazure and A. Grothendieck, Schémas en groupes, Séminaire, Inst. Hautes Etudes Sci., Paris, 1963/64.
- B. Dwork, $p$-adic cycles, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 27–115. MR 294346, DOI 10.1007/BF02684886
- Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 69–190. MR 0447119
- Michel Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955), 251–274 (French). MR 73925, DOI 10.24033/bsmf.1462 —, Les zéros des fonctions analytiques d’une variable sur un corps valué complet, Inst. Hautes Etudes Sci. Publ. Math. no. 14, Paris, 1962, pp. 47-75.
- Jonathan Lubin, One-parameter formal Lie groups over ${\mathfrak {p}}$-adic integer rings, Ann. of Math. (2) 80 (1964), 464–484. MR 168567, DOI 10.2307/1970659
- Jonathan Lubin, Finite subgroups and isogenies of one-parameter formal Lie groups, Ann. of Math. (2) 85 (1967), 296–302. MR 209287, DOI 10.2307/1970443
- Jonathan Lubin and John Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 49–59. MR 238854, DOI 10.24033/bsmf.1633
- John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1–21. MR 265368, DOI 10.24033/asens.1186
- J. T. Tate, $p$-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158–183. MR 0231827
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 251 (1979), 103-127
- MSC: Primary 14L05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0531971-4
- MathSciNet review: 531971