Canonical subgroups of formal groups
Author:
Jonathan Lubin
Journal:
Trans. Amer. Math. Soc. 251 (1979), 103-127
MSC:
Primary 14L05
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531971-4
MathSciNet review:
531971
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let R be a complete local domain of mixed characteristic. This paper gives a complete answer to the question: ``If F is a one-dimensional formal group over R of finite height, when is there a canonical morphism that lifts Frobenius?'' For given height h, a universal family of formal groups F with such a morphism is constructed, and the shape of
is described for small values of h.
- [1] A. Fröhlich, Formal groups, Lecture Notes in Mathematics, No. 74, Springer-Verlag, Berlin-New York, 1968. MR 0242837
- [2] M. Demazure and A. Grothendieck, Schémas en groupes, Séminaire, Inst. Hautes Etudes Sci., Paris, 1963/64.
- [3] B. Dwork, 𝑝-adic cycles, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 27–115. MR 294346
- [4] Nicholas M. Katz, 𝑝-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 69–190. Lecture Notes in Mathematics, Vol. 350. MR 0447119
- [5] Michel Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955), 251–274 (French). MR 73925
- [6] -, Les zéros des fonctions analytiques d'une variable sur un corps valué complet, Inst. Hautes Etudes Sci. Publ. Math. no. 14, Paris, 1962, pp. 47-75.
- [7] Jonathan Lubin, One-parameter formal Lie groups over 𝔭-adic integer rings, Ann. of Math. (2) 80 (1964), 464–484. MR 168567, https://doi.org/10.2307/1970659
- [8] Jonathan Lubin, Finite subgroups and isogenies of one-parameter formal Lie groups, Ann. of Math. (2) 85 (1967), 296–302. MR 209287, https://doi.org/10.2307/1970443
- [9] Jonathan Lubin and John Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 49–59. MR 238854
- [10] John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1–21. MR 265368
- [11] J. T. Tate, 𝑝-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158–183. MR 0231827
Retrieve articles in Transactions of the American Mathematical Society with MSC: 14L05
Retrieve articles in all journals with MSC: 14L05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531971-4
Article copyright:
© Copyright 1979
American Mathematical Society