On a sufficient condition for proximity
Author:
Ka Sing Lau
Journal:
Trans. Amer. Math. Soc. 251 (1979), 343-356
MSC:
Primary 46B99; Secondary 41A65, 47D15
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531983-0
MathSciNet review:
531983
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A closed subspace M in a Banach space X is called U-proximinal if it satisfies: , for some positive valued function
,
, and
as
, where S is the closed unit ball of X. One of the important properties of this class of subspaces is that the metric projections are continuous. We show that many interesting subspaces are U-proximinal, for example, the subspaces with the 2-ball property (semi M-ideals) and certain subspaces of compact operators in the spaces of bounded linear operators.
- [1] Erik M. Alfsen and Edward G. Effros, Structure in real Banach spaces. I, II, Ann. of Math. (2) 96 (1972), 98–128; ibid. (2) 96 (1972), 129–173. MR 352946, https://doi.org/10.2307/1970895
- [2] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523
- [3] H. Fakhoury, Sur les M-idéaux dans certains espaces d'opérateurs et l'approximation par des opérateurs compacts (to appear).
- [4] Julien Hennefeld, A decomposition for 𝐵(𝑋)* and unique Hahn-Banach extensions, Pacific J. Math. 46 (1973), 197–199. MR 370265
- [5] R. B. Holmes, 𝑀-ideals in approximation theory, Approximation theory, II (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976) Academic Press, New York, 1976, pp. 391–396. MR 0427927
- [6] B. R. Kripke and R. B. Holmes, Approximation of bounded functions by continuous functions, Bull. Amer. Math. Soc. 71 (1965), 896–897. MR 182702, https://doi.org/10.1090/S0002-9904-1965-11433-1
- [7] Richard Holmes and Bernard Kripke, Smoothness of approximation, Michigan Math. J. 15 (1968), 225–248. MR 228904
- [8] Richard B. Holmes and Bernard R. Kripke, Best approximation by compact operators, Indiana Univ. Math. J. 21 (1971/72), 255–263. MR 296659, https://doi.org/10.1512/iumj.1971.21.21020
- [9] Richard Holmes, Bruce Scranton, and Joseph Ward, Approximation from the space of compact operators and other 𝑀-ideals, Duke Math. J. 42 (1975), 259–269. MR 394301
- [10] Ka Sing Lau, Approximation by continuous vector-valued functions, Studia Math. 68 (1980), no. 3, 291–298. MR 599151, https://doi.org/10.4064/sm-68-3-291-298
- [11] -, M-ideals and approximation by compact operators (unpublished).
- [12] Åsvald Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1–62. MR 430747, https://doi.org/10.1090/S0002-9947-1977-0430747-4
- [13] Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. No. 48 (1964), 112. MR 0179580
- [14] Joram Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263–287. MR 167821
- [15] Jaroslav Mach and Joseph D. Ward, Approximation by compact operators on certain Banach spaces, J. Approx. Theory 23 (1978), no. 3, 274–286. MR 505751, https://doi.org/10.1016/0021-9045(78)90116-8
- [16] R. R. Smith and J. D. Ward, 𝑀-ideal structure in Banach algebras, J. Functional Analysis 27 (1978), no. 3, 337–349. MR 0467316, https://doi.org/10.1016/0022-1236(78)90012-5
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B99, 41A65, 47D15
Retrieve articles in all journals with MSC: 46B99, 41A65, 47D15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1979-0531983-0
Keywords:
Compact operators,
measurable functions,
M-ideals,
proximity,
uniformly convex
Article copyright:
© Copyright 1979
American Mathematical Society