Optimal stochastic switching and the Dirichlet problem for the Bellman equation
HTML articles powered by AMS MathViewer
- by Lawrence C. Evans and Avner Friedman PDF
- Trans. Amer. Math. Soc. 253 (1979), 365-389 Request permission
Abstract:
Let ${L^i}$ be a sequence of second order elliptic operators in a bounded n-dimensional domain $\Omega$, and let ${f^i}$ be given functions. Consider the problem of finding a solution u to the Bellman equation ${\sup _i}({L^i}u - {f^i}) = 0$ a.e. in $\Omega$, subject to the Dirichlet boundary condition $u = 0$ on $\partial \Omega$. It is proved that, provided the leading coefficients of the ${L^i}$ are constants, there exists a unique solution u of this problem, belonging to ${W^{1,\infty }}(\Omega ) \cap W_{{\text {loc}}}^{2,\infty }(\Omega )$. The solution is obtained as a limit of solutions of certain weakly coupled systems of nonlinear elliptic equations; each component of the vector solution converges to u. Although the proof is entirely analytic, it is partially motivated by models of stochastic control. We solve also certain systems of variational inequalities corresponding to switching with cost.References
- Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843, DOI 10.1007/978-94-010-1537-0
- Alain Bensoussan and Jacques-Louis Lions, Contrôle impulsionnel et systèmes d’inéquations quasi variationnelles, C. R. Acad. Sci. Paris Sér. A 278 (1974), 747–751 (French). MR 341246
- A. Bensoussan and J.-L. Lions, Applications des inéquations variationnelles en contrôle stochastique, Méthodes Mathématiques de l’Informatique, No. 6, Dunod, Paris, 1978 (French). MR 0513618
- Jean-Michel Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A333–A336 (French). MR 223711
- H. Brézis and L. C. Evans, A variational inequality approach to the Bellman-Dirichlet equation for two elliptic operators, Arch. Rational Mech. Anal. 71 (1979), no. 1, 1–13. MR 522704, DOI 10.1007/BF00250667
- Haïm Brézis and David Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (1973/74), 831–844. MR 361436, DOI 10.1512/iumj.1974.23.23069
- Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan 25 (1973), 565–590. MR 336050, DOI 10.2969/jmsj/02540565
- Maurizio Chicco, Principio di massimo per soluzioni di equazioni ellittiche del secondo ordine di tipo Cordes, Ann. Mat. Pura Appl. (4) 100 (1974), 239–258 (Italian, with English summary). MR 377261, DOI 10.1007/BF02412159
- Lawrence C. Evans, A convergence theorem for solutions of nonlinear second-order elliptic equations, Indiana Univ. Math. J. 27 (1978), no. 5, 875–887. MR 503721, DOI 10.1512/iumj.1978.27.27059
- Lawrence C. Evans and Pierre-Louis Lions, Deux résultats de régularité pour le problème de Bellman-Dirichlet, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 13, A587–A589 (French, with English summary). MR 494517
- Avner Friedman, Stochastic differential equations and applications. Vol. 1, Probability and Mathematical Statistics, Vol. 28, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0494490
- N. V. Krylov, A certain estimate from the theory of stochastic integrals, Teor. Verojatnost. i Primenen. 16 (1971), 446–457 (Russian, with English summary). MR 0298792 —, Control of a solution of a stochastic integral equation, Theor. Probability Appl. 17 (1972), 114-130.
- Makiko Nisio, Remarks on stochastic optimal controls, Japan. J. Math. (N.S.) 1 (1975/76), no. 1, 159–183. MR 446697, DOI 10.4099/math1924.1.159
- Stanley R. Pliska, A semigroup representation of the maximum expected reward vector in continuous parameter Markov decision theory, SIAM J. Control 13 (1975), no. 6, 1115–1129. MR 0395862, DOI 10.1137/0313069
- Keniti Sato, On the generators of non-negative contraction semigroups in Banach lattices, J. Math. Soc. Japan 20 (1968), 423–436. MR 231243, DOI 10.2969/jmsj/02030423
- Eugenio Sinestrari, Accretive differential operators, Boll. Un. Mat. Ital. B (5) 13 (1976), no. 1, 19–31 (English, with Italian summary). MR 0425682
- P. E. Sobolevskiĭ, On equations with operators forming an acute angle, Dokl. Akad. Nauk SSSR (N.S.) 116 (1957), 754–757. MR 0097727
Additional Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 253 (1979), 365-389
- MSC: Primary 93E20
- DOI: https://doi.org/10.1090/S0002-9947-1979-0536953-4
- MathSciNet review: 536953