Continuously translating vector-valued measures
Authors:
U. B. Tewari and M. Dutta
Journal:
Trans. Amer. Math. Soc. 257 (1980), 507-519
MSC:
Primary 28B05
DOI:
https://doi.org/10.1090/S0002-9947-1980-0552271-0
MathSciNet review:
552271
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let G be a locally compact group and A an arbitrary Banach space. will denote the space of p-integrable A-valued functions on G.
will denote the space of regular A-valued Borel measures of bounded variation on G. In this paper, we characterise the relatively compact subsets of
. Using this result, we prove that if
, such that either
or
is continuous, then
.
- [1] N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- [2] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin and New York, 1963.
- [3] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
- [4] James E. Huneycutt Jr., Products and convolutions of vector valued set functions, Studia Math. 41 (1972), 119–129. MR 302855, https://doi.org/10.4064/sm-41-2-119-129
- [5] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. MR 0070144
- [6] J. J. Uhl Jr., The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158–163. MR 264029, https://doi.org/10.1090/S0002-9939-1969-0264029-1
- [7] A. Weil, L'integration dans les groupes topologiques et ses applications, Hermann, Paris, 1951.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28B05
Retrieve articles in all journals with MSC: 28B05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1980-0552271-0
Keywords:
Locally compact group,
vector-valued measures
Article copyright:
© Copyright 1980
American Mathematical Society