Fractional differentiation and Lipschitz spaces on local fields
HTML articles powered by AMS MathViewer
- by C. W. Onneweer
- Trans. Amer. Math. Soc. 258 (1980), 155-165
- DOI: https://doi.org/10.1090/S0002-9947-1980-0554325-1
- PDF | Request permission
Abstract:
In this paper we continue our study of differentiation on a local field K. We define strong derivatives of fractional order $\alpha > 0$ for functions in ${L_r}(\textbf {K})$, $1 \leqslant r < \infty$. After establishing a number of basic properties for such derivatives we prove that the spaces of Bessel potentials on K are equal to the spaces of strongly ${L_r}(\textbf {K})$-differentiable functions of order $\alpha > 0$ when $1 \leqslant r \leqslant 2$. We then focus our attention on the relationship between these spaces and the generalized Lipschitz spaces over K. Among others, we prove an inclusion theorem similar to a wellknown result of Taibleson for such spaces over ${\textbf {R}^n}$.References
- Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York, Inc., New York, 1967. MR 0230022
- P. L. Butzer and K. Scherer, On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and theorems of M. Zamansky and S. B. Stečkin, Aequationes Math. 3 (1969), 170–185. MR 264301, DOI 10.1007/BF01817511
- P. L. Butzer and H. J. Wagner, Walsh-Fourier series and the concept of a derivative, Applicable Anal. 3 (1973), 29–46. MR 404978, DOI 10.1080/00036817308839055
- C. W. Onneweer, Differentiation on a $p$-adic or $p$-series field, Linear spaces and approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977) Internat. Ser. Numer. Math., Vol. 40, Birkhäuser, Basel, 1978, pp. 187–198. MR 0511077
- C. W. Onneweer, On the definition of dyadic differentiation, Applicable Anal. 9 (1979), no. 4, 267–278. MR 553959, DOI 10.1080/00036817908839275
- Jenő Pál, On a concept of a derivative among functions defined on the dyadic field, SIAM J. Math. Anal. 8 (1977), no. 3, 375–391. MR 620817, DOI 10.1137/0508028
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Mitchell H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties, J. Math. Mech. 13 (1964), 407–479. MR 0163159
- Mitchell Taibleson, Harmonic analysis on $n$-dimensional vector spaces over local fields. I. Basic results on fractional integration, Math. Ann. 176 (1968), 191–207. MR 226394, DOI 10.1007/BF02052825
- Mitchell H. Taibleson, Harmonic analysis on $n$-dimensional vector spaces over local fields. II. Generalized Gauss kernels and the Littlewood-Paley function, Math. Ann. 186 (1970), 1–19. MR 264394, DOI 10.1007/BF01350636
- M. H. Taibleson, Fourier analysis on local fields, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0487295
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 155-165
- MSC: Primary 43A70; Secondary 26A33
- DOI: https://doi.org/10.1090/S0002-9947-1980-0554325-1
- MathSciNet review: 554325