## Equivariant classifying spaces and fibrations

HTML articles powered by AMS MathViewer

- by Stefan Waner PDF
- Trans. Amer. Math. Soc.
**258**(1980), 385-405 Request permission

## Abstract:

Explicit classifying spaces for equivariant fibrations are constructed using the geometric two-sided bar construction. The constructions are then extended to classify stable equivariant spherical fibrations and equivariant*K*-theory. The ambient groups is assumed compact Lie.

## References

- Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144**
T. tom Dieck, - Sören Illman,
*Equivariant singular homology and cohomology. I*, Mem. Amer. Math. Soc.**1**(1975), no. issue 2, 156, ii+74. MR**375286**, DOI 10.1090/memo/0156 - R. Lashof and M. Rothenberg,
*$G$-smoothing theory*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 211–266. MR**520506**
J. P. May, - J. Peter May,
*Classifying spaces and fibrations*, Mem. Amer. Math. Soc.**1**(1975), no. 1, 155, xiii+98. MR**370579**, DOI 10.1090/memo/0155 - J. P. May,
*$E_{\infty }$ spaces, group completions, and permutative categories*, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp. 61–93. MR**0339152** - J. M. Boardman and R. M. Vogt,
*Homotopy invariant algebraic structures on topological spaces*, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR**0420609** - Takao Matumoto,
*On $G$-$\textrm {CW}$ complexes and a theorem of J. H. C. Whitehead*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**18**(1971), 363–374. MR**345103**
J. P. May, H. Hauschild and S. Waner, - James Stasheff,
*A classification theorem for fibre spaces*, Topology**2**(1963), 239–246. MR**154286**, DOI 10.1016/0040-9383(63)90006-5
S. Waner, - Stefan Waner,
*Equivariant homotopy theory and Milnor’s theorem*, Trans. Amer. Math. Soc.**258**(1980), no. 2, 351–368. MR**558178**, DOI 10.1090/S0002-9947-1980-0558178-7 - Stefan Waner,
*Equivariant homotopy theory and Milnor’s theorem*, Trans. Amer. Math. Soc.**258**(1980), no. 2, 351–368. MR**558178**, DOI 10.1090/S0002-9947-1980-0558178-7

*Equivariant stable homotopy theory*, Chicago Lecture Notes, 1975.

*Homotopic foundations of algebraic topology*, Mimeographed notes, University of Chicago (to appear).

*Equivariant infinite loop spaces*(in preparation).

*Cyclic group actions and the Adams conjecture*(to appear).

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**258**(1980), 385-405 - MSC: Primary 55P99; Secondary 55R05, 57S15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558180-5
- MathSciNet review: 558180