Equivariant classifying spaces and fibrations
HTML articles powered by AMS MathViewer
- by Stefan Waner
- Trans. Amer. Math. Soc. 258 (1980), 385-405
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558180-5
- PDF | Request permission
Abstract:
Explicit classifying spaces for equivariant fibrations are constructed using the geometric two-sided bar construction. The constructions are then extended to classify stable equivariant spherical fibrations and equivariant K-theory. The ambient groups is assumed compact Lie.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144 T. tom Dieck, Equivariant stable homotopy theory, Chicago Lecture Notes, 1975.
- Sören Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 1 (1975), no. issue 2, 156, ii+74. MR 375286, DOI 10.1090/memo/0156
- R. Lashof and M. Rothenberg, $G$-smoothing theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 211–266. MR 520506 J. P. May, Homotopic foundations of algebraic topology, Mimeographed notes, University of Chicago (to appear).
- J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. MR 370579, DOI 10.1090/memo/0155
- J. P. May, $E_{\infty }$ spaces, group completions, and permutative categories, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London, 1974, pp. 61–93. MR 0339152
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609
- Takao Matumoto, On $G$-$\textrm {CW}$ complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363–374. MR 345103 J. P. May, H. Hauschild and S. Waner, Equivariant infinite loop spaces (in preparation).
- James Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246. MR 154286, DOI 10.1016/0040-9383(63)90006-5 S. Waner, Cyclic group actions and the Adams conjecture (to appear).
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 385-405
- MSC: Primary 55P99; Secondary 55R05, 57S15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558180-5
- MathSciNet review: 558180