Linear operators on $L_{p}$ for $0<p<1$
HTML articles powered by AMS MathViewer
- by N. J. Kalton
- Trans. Amer. Math. Soc. 259 (1980), 319-355
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567084-3
- PDF | Request permission
Abstract:
If $0 < p < 1$ we classify completely the linear operators $T: {L_p} \to X$ where X is a p-convex symmetric quasi-Banach function space. We also show that if $T: {L_p} \to {L_0}$ is a nonzero linear operator, then for $p < q \leqslant 2$ there is a subspace Z of ${L_p}$, isomorphic to ${L_q}$, such that the restriction of T to Z is an isomorphism. On the other hand, we show that if $p < q < \infty$, the Lorentz space $L(p, q)$ is a quotient of ${L_p}$ which contains no copy of ${l_p}$.References
- R. V. Chacon and U. Krengel, Linear modulus of linear operator, Proc. Amer. Math. Soc. 15 (1964), 553–559. MR 164244, DOI 10.1090/S0002-9939-1964-0164244-7
- Wojchiech Herer and Jens Peter Reus Christensen, On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann. 213 (1975), 203–210. MR 412369, DOI 10.1007/BF01350870
- M. Cwikel and Y. Sagher, $L(p,\infty )$, Indiana Univ. Math. J. 21 (1971/72), 781–786. MR 295071, DOI 10.1512/iumj.1972.21.21062
- Mahlon M. Day, The spaces $L^p$ with $0<p<1$, Bull. Amer. Math. Soc. 46 (1940), 816–823. MR 2700, DOI 10.1090/S0002-9904-1940-07308-2
- L. Drewnowski, On subseries convergence in some function spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 797–803 (English, with Russian summary). MR 365113
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- D. J. H. Garling, Non-negative random measures and order-preserving embeddings, J. London Math. Soc. (2) 11 (1975), no. 1, 35–45. MR 394868, DOI 10.1112/jlms/s2-11.1.35
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874
- Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR 0254888
- N. J. Kalton, Compact and strictly singular operators on Orlicz spaces, Israel J. Math. 26 (1977), no. 2, 126–136. MR 636121, DOI 10.1007/BF03007663 —, The endomorphisms of ${L_p}$, $0\, \leqslant \,p\, \leqslant \,1$, Indiana Univ. Math. J. 27 (1978), 353-381.
- N. J. Kalton, Transitivity and quotients of Orlicz spaces, Comment. Math. Spec. Issue 1 (1978), 159–172. Special issue dedicated to Władysław Orlicz on the occasion of his seventy-fifth birthday. MR 504160
- N. J. Kalton, An analogue of the Radon-Nikodým property for nonlocally convex quasi-Banach spaces, Proc. Edinburgh Math. Soc. (2) 22 (1979), no. 1, 49–60. MR 536592, DOI 10.1017/S0013091500027802 —, Embedding ${L_1}$ in a Banach lattice, Israel J. Math. 32 (1979), 209-220. —, The convexity type of a quasi-Banach space, Studia Math. (to appear).
- Marek Kanter, Stable laws and the imbedding of $L^{p}$ spaces, Amer. Math. Monthly 80 (1973), 403–407. MR 319277, DOI 10.2307/2319082
- S. Kwapień, On the form of a linear operator in the space of all measurable functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 951–954 (English, with Russian summary). MR 336313
- Heinrich P. Lotz, Minimal and reflexive Banach lattices, Math. Ann. 209 (1974), 117–126. MR 358285, DOI 10.1007/BF01351316
- B. Maurey, Rappels sur les opérateurs sommants et radonifiants, Séminaire Maurey-Schwartz 1973–1974: Espaces $L^p$, applications radonifiantes et géométrie des espaces de Banach, Centre de Math., École Polytech., Paris, 1974, pp. Exp. Nos. 1 et 2, 19 (French). MR 0425660
- E. M. Nikišin, Resonance theorems and superlinear operators, Uspehi Mat. Nauk 25 (1970), no. 6(156), 129–191 (Russian). MR 0296584
- E. M. Nikišin, A resonance theorem and series in eigenfunctions of the Laplace operator, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 795–813 (Russian). MR 0343091
- E. M. Nikišin, Systems of convergence in measure for $l_{2}$, Mat. Zametki 13 (1973), 337–340 (Russian). MR 317031
- Daniel M. Oberlin, Translation-invariant operators on $L^{p}(G),$ $0<p<1$. II, Canadian J. Math. 29 (1977), no. 3, 626–630. MR 430678, DOI 10.4153/CJM-1977-063-8
- Daniel M. Oberlin, Translation-invariant operators of weak type, Pacific J. Math. 85 (1979), no. 1, 155–164. MR 571633, DOI 10.2140/pjm.1979.85.155
- W. Orlicz, Linear operations in Saks spaces. II, Studia Math. 15 (1955), 1–25. MR 73942, DOI 10.4064/sm-15-1-1-25
- Diethard Pallaschke, The compact endomorphisms of the metric linear spaces ${\cal L}\phi$, Studia Math. 47 (1973), 123–133. MR 333702, DOI 10.4064/sm-47-2-123-133
- J. D. Pryce, An unpleasant set in a non-locally-convex vector lattice, Proc. Edinburgh Math. Soc. (2) 18 (1972/73), 229–233. MR 324385, DOI 10.1017/S0013091500009962
- Stefan Rolewicz, Metric linear spaces, 2nd ed., PWN—Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984. MR 802450
- Yoram Sagher, Interpolation of $r$-Banach spaces, Studia Math. 41 (1972), 45–70. MR 306895, DOI 10.4064/sm-41-1-45-70
- S. Sawyer, Maximal inequalities of weak type, Ann. of Math. (2) 84 (1966), 157–174. MR 209867, DOI 10.2307/1970516
- Philippe Turpin, Opérateurs linéaires entre espaces d’Orlicz non localement convexes, Studia Math. 46 (1973), 153–165 (French). MR 343010, DOI 10.4064/sm-46-2-153-165 —, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).
- J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251–261. MR 49911, DOI 10.2140/pjm.1952.2.251
- J. H. Williamson, Compact linear operators in linear topological spaces, J. London Math. Soc. 29 (1954), 149–156. MR 61270, DOI 10.1112/jlms/s1-29.2.149
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279, DOI 10.1007/978-3-642-65762-7
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 319-355
- MSC: Primary 47B38; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567084-3
- MathSciNet review: 567084