Higher divided squares in second-quadrant spectral sequences
HTML articles powered by AMS MathViewer
- by W. G. Dwyer
- Trans. Amer. Math. Soc. 260 (1980), 437-447
- DOI: https://doi.org/10.1090/S0002-9947-1980-0574790-3
- PDF | Request permission
Abstract:
The geometric action of the Steenrod algebra on many mod 2 cohomology spectral sequences is complemented by the action of a completely different algebra.References
- D. W. Anderson, A generalization of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc. 78 (1972), 784–786. MR 310889, DOI 10.1090/S0002-9904-1972-13034-9
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Albrecht Dold, Über die Steenrodschen Kohomologieoperationen, Ann. of Math. (2) 73 (1961), 258–294 (German). MR 123318, DOI 10.2307/1970334
- W. G. Dwyer, Homotopy operations for simplicial commutative algebras, Trans. Amer. Math. Soc. 260 (1980), no. 2, 421–435. MR 574789, DOI 10.1090/S0002-9947-1980-0574789-7
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153–231. MR 0281196
- David L. Rector, Steenrod operations in the Eilenberg-Moore spectral sequence, Comment. Math. Helv. 45 (1970), 540–552. MR 278310, DOI 10.1007/BF02567352
- William M. Singer, Steenrod squares in spectral sequences. I, II, Trans. Amer. Math. Soc. 175 (1973), 327–336; ibid. 175 (1973), 337–353. MR 319194, DOI 10.1090/S0002-9947-1973-0319194-X —, Steenrod squares in spectral sequences. II, Trans. Amer. Math. Soc. 175 (1973), 337-353.
- Larry Smith, On the Künneth theorem. I. The Eilenberg-Moore spectral sequence, Math. Z. 116 (1970), 94–140. MR 286099, DOI 10.1007/BF01109956
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 260 (1980), 437-447
- MSC: Primary 55S10; Secondary 55T20
- DOI: https://doi.org/10.1090/S0002-9947-1980-0574790-3
- MathSciNet review: 574790