## On locally and globally conformal Kähler manifolds

HTML articles powered by AMS MathViewer

- by Izu Vaisman PDF
- Trans. Amer. Math. Soc.
**262**(1980), 533-542 Request permission

## Abstract:

Some relations between the locally conformal Kähler (l.c.K.) and the globally conformal Kähler (g.c.K.) properties are established. Compact l.c.K. manifolds which are not g.c.K. do not have Kähler metrics. l.c.K. manifolds which are not g.c.K. are analytically irreducible. Various curvature restrictions on l.c.K. manifolds imply the g.c.K. property. Total spaces of induced Hopf fibrations are l.c.K. and not g.c.K. manifolds. Conjecture. A compact l.c.K. manifold which is not g.c.K. has at least one odd odd-dimensional Betti number.## References

- Toyoko Kashiwada,
*Some properties of locally conformal Kähler manifolds*, Hokkaido Math. J.**8**(1979), no. 2, 191–198. MR**551550**, DOI 10.14492/hokmj/1381758270 - Toyoko Kashiwada and Shizuko Sato,
*On harmonic forms in compact locally conformal Kähler manifolds with the parallel Lee form*, Ann. Fac. Sci. Univ. Nat. Zaï re (Kinshasa) Sect. Math.-Phys.**6**(1980), no. 1-2, 17–29. MR**678639** - Shoshichi Kobayashi and Katsumi Nomizu,
*Foundations of differential geometry. Vol I*, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR**0152974** - K. Kodaira,
*On the structure of compact complex analytic surfaces. I*, Amer. J. Math.**86**(1964), 751–798. MR**187255**, DOI 10.2307/2373157 - Yozo Matsushima,
*Holomorphic vector fields on compact Kähler manifolds*, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 7, American Mathematical Society, Providence, R.I., 1971. MR**0412485**, DOI 10.1090/cbms/007 - Bruce L. Reinhart,
*Foliated manifolds with bundle-like metrics*, Ann. of Math. (2)**69**(1959), 119–132. MR**107279**, DOI 10.2307/1970097 - Shigeo Sasaki,
*On almost contact manifolds*, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. 128–136. MR**0215232** - J. A. Schouten,
*Der Ricci-Kalkül*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 10, Springer-Verlag, Berlin-New York, 1978 (German). Eine Einführung in die neueren Methoden und Probleme der mehrdimensionalen Differentialgeometrie; Reprint of the 1924 original. MR**516659** - Izu Vaisman,
*On the analytic distributions and foliations of a Kähler manifold*, Proc. Amer. Math. Soc.**58**(1976), 221–228. MR**428233**, DOI 10.1090/S0002-9939-1976-0428233-5
—, - Izu Vaisman,
*A theorem on compact locally conformal Kähler manifolds*, Proc. Amer. Math. Soc.**75**(1979), no. 2, 279–283. MR**532151**, DOI 10.1090/S0002-9939-1979-0532151-4 - Izu Vaisman,
*Some curvature properties of locally conformal Kähler manifolds*, Trans. Amer. Math. Soc.**259**(1980), no. 2, 439–447. MR**567089**, DOI 10.1090/S0002-9947-1980-0567089-2 - Izu Vaisman,
*A geometric condition for an l.c.K. manifold to be Kähler*, Geom. Dedicata**10**(1981), no. 1-4, 129–134. MR**608134**, DOI 10.1007/BF01447416
—, Locally conformal

*On locally conformal almost Kähler manifolds*, Israel J. Math.

**24**(1976), 338-351.

*Kähler manifolds with parallel Lee form*, Rend. Mat. (2)

**12**(1979), 265-284.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**262**(1980), 533-542 - MSC: Primary 53C55; Secondary 53B35
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586733-7
- MathSciNet review: 586733