Representations of functions by derivatives
HTML articles powered by AMS MathViewer
- by S. J. Agronsky, R. Biskner, A. M. Bruckner and J. Mařík
- Trans. Amer. Math. Soc. 263 (1981), 493-500
- DOI: https://doi.org/10.1090/S0002-9947-1981-0594421-7
- PDF | Request permission
Abstract:
Let $\Delta ’$ be the class of all derivatives. The main goal of this paper is the investigation of the vector space generated by $\Delta ’$ and O’Malley’s class $B_1^ \ast$; this space is identical with our system $[\Delta ’]$. We show, in particular, that each approximately continuous function and each approximate derivative belongs to $[\Delta ’]$ and that $[\Delta ’]$ is the system of all functions of the form $g’ + hk’$, where $g$, $h$ and $k$ are differentiable.References
- S. Agronsky, Characterizations of certain subclasses of the Baire class $1$, Doctoral Dissertation, Univ. of California, Santa Barbara, 1974.
- A. M. Bruckner, Inflexible derivatives, Quart. J. Math. Oxford Ser. (2) 29 (1978), no. 113, 1–10. MR 476938, DOI 10.1093/qmath/29.1.1
- A. M. Bruckner and J. G. Ceder, Darboux continuity, Jber. Deutsch. Math.-Verein. 67 (1964/65), no. Abt. 1, 93–117. MR 186761
- Richard J. Fleissner, Multiplication and the fundamental theorem of calculus—a survey, Real Anal. Exchange 2 (1976/77), no. 1, 7–34. MR 507383
- Casper Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960), 962–966. MR 118792, DOI 10.1090/S0002-9939-1960-0118792-2
- Richard J. O’Malley, Baire* $1$, Darboux functions, Proc. Amer. Math. Soc. 60 (1976), 187–192. MR 417352, DOI 10.1090/S0002-9939-1976-0417352-5
- R. J. O’Malley, Selective derivates, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 1-2, 77–97. MR 437690, DOI 10.1007/BF01896470
- Richard J. O’Malley, Decomposition of approximate derivatives, Proc. Amer. Math. Soc. 69 (1978), no. 2, 243–247. MR 0466446, DOI 10.1090/S0002-9939-1978-0466446-9
- G. Petruska and M. Laczkovich, Baire $1$ functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar. 25 (1974), 189–212. MR 379766, DOI 10.1007/BF01901760
- David Preiss, Level sets of derivatives, Trans. Amer. Math. Soc. 272 (1982), no. 1, 161–184. MR 656484, DOI 10.1090/S0002-9947-1982-0656484-0
- Clifford E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363–376. MR 176007, DOI 10.1090/S0002-9947-1965-0176007-2
- Clifford E. Weil, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527–536. MR 335703, DOI 10.1512/iumj.1973.23.23044
- Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54 (French). MR 37338, DOI 10.1090/S0002-9947-1950-0037338-9
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 263 (1981), 493-500
- MSC: Primary 26A24; Secondary 26A21, 26A27
- DOI: https://doi.org/10.1090/S0002-9947-1981-0594421-7
- MathSciNet review: 594421