Involutions on Klein spaces $M(p, q)$
HTML articles powered by AMS MathViewer
- by Paik Kee Kim
- Trans. Amer. Math. Soc. 268 (1981), 377-409
- DOI: https://doi.org/10.1090/S0002-9947-1981-0632535-3
- PDF | Request permission
Abstract:
The Klein spaces $M(p, q)$ are defined (up to homeomorphisms) to be the class of closed, orientable, irreducible $3$-manifolds with finite fundamental groups, in which a Klein bottle can be embedded. Their fundamental groups act freely on the $3$-sphere ${S^3}$ in the natural way. We obtain a complete classification of the PL involutions on Klein spaces $M(p, q)$. It can be applied to the study of some transformation group actions on ${S^3}$ and double branched coverings of ${S^3}$.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- E. M. Brown, Unknotting in $M^{2}\times I$, Trans. Amer. Math. Soc. 123 (1966), 480β505. MR 198482, DOI 10.1090/S0002-9947-1966-0198482-0
- P. E. Conner, Concerning the action of a finite group, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 349β351. MR 79272, DOI 10.1073/pnas.42.6.349
- D. B. A. Epstein, Finite presentations of groups and $3$-manifolds, Quart. J. Math. Oxford Ser. (2) 12 (1961), 205β212. MR 144321, DOI 10.1093/qmath/12.1.205 β, Curves on $2$-manifolds and isotopies, Acta Math. 155 (1966), 83-107. B. Evans and J. Maxwell, Quaternion actions on ${S^3}$ (preprint).
- E. E. Floyd, On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952), 138β147. MR 46039, DOI 10.1090/S0002-9947-1952-0046039-4
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- Paik Kee Kim, $\textrm {PL}$ involutions on lens spaces and other $3$-manifolds, Proc. Amer. Math. Soc. 44 (1974), 467β473. MR 375363, DOI 10.1090/S0002-9939-1974-0375363-0
- Paik Kee Kim, Periodic homeomorphisms of the $3$-sphere and related spaces, Michigan Math. J. 21 (1974), 1β6. MR 350739
- Paik Kee Kim, $\textrm {PL}$ involutions on the nonorientable $2$-sphere bundle over $S^{1}$, Proc. Amer. Math. Soc. 55 (1976), no.Β 2, 449β452. MR 394717, DOI 10.1090/S0002-9939-1976-0394717-1
- Paik Kee Kim, Cyclic actions on lens spaces, Trans. Amer. Math. Soc. 237 (1978), 121β144. MR 479366, DOI 10.1090/S0002-9947-1978-0479366-5
- Paik Kee Kim, Some $3$-manifolds which admit Klein bottles, Trans. Amer. Math. Soc. 244 (1978), 299β312. MR 506621, DOI 10.1090/S0002-9947-1978-0506621-2
- Paik Kee Kim and Jeffrey L. Tollefson, PL involutions of fibered $3$-manifolds, Trans. Amer. Math. Soc. 232 (1977), 221β237. MR 454981, DOI 10.1090/S0002-9947-1977-0454981-2
- Paik Kee Kim and Jeffrey L. Tollefson, Splitting the PL involutions of nonprime $3$-manifolds, Michigan Math. J. 27 (1980), no.Β 3, 259β274. MR 584691
- K. W. Kwun, Sense-preserving $\textrm {PL}$ involutions of some lens spaces, Michigan Math. J. 20 (1973), 73β77. MR 310865
- Kyung Whan Kwun and Jeffrey L. Tollefson, $\textrm {PL}$ involutions of $S^{1}\times S^{1}\times S^{1}$, Trans. Amer. Math. Soc. 203 (1975), 97β106. MR 370634, DOI 10.1090/S0002-9947-1975-0370634-1
- Kyung Whan Kwun and Jeffrey L. Tollefson, Extending a PL involution of the interior of a compact manifold, Amer. J. Math. 99 (1977), no.Β 5, 995β1001. MR 470966, DOI 10.2307/2373996
- G. R. Livesay, Involutions with two fixed points on the three-sphere, Ann. of Math. (2) 78 (1963), 582β593. MR 155323, DOI 10.2307/1970543
- John Milnor, Groups which act on $S^n$ without fixed points, Amer. J. Math. 79 (1957), 623β630. MR 90056, DOI 10.2307/2372566
- W. Mangler, Die Klassen von topologischen Abbildungen einer geschlossenen FlΓ€che auf sich, Math. Z. 44 (1939), no.Β 1, 541β554 (German). MR 1545786, DOI 10.1007/BF01210672
- Robert Myers, Free involutions on lens spaces, Topology 20 (1981), no.Β 3, 313β318. MR 608603, DOI 10.1016/0040-9383(81)90005-7 M. A. Natsheh, Piecewise linear involutions on ${P^2} \times {S^1}$, Thesis, Michigan State Univ., 1974.
- P. M. Rice, Free actions of $Z_{4}$ on $S^{3}$, Duke Math. J. 36 (1969), 749β751. MR 248814
- Gerhard X. Ritter, Free $Z_{8}$ actions on $S^{3}$, Trans. Amer. Math. Soc. 181 (1973), 195β212. MR 321078, DOI 10.1090/S0002-9947-1973-0321078-8
- J. H. Rubinstein, On $3$-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129β137. MR 531972, DOI 10.1090/S0002-9947-1979-0531972-6
- Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131β286 (German). MR 72482, DOI 10.1007/BF02392437
- H. Seifert, Topologie Dreidimensionaler Gefaserter RΓ€ume, Acta Math. 60 (1933), no.Β 1, 147β238 (German). MR 1555366, DOI 10.1007/BF02398271
- John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12β19. MR 121796, DOI 10.2307/1970146 β, On fibering certain $3$-manifolds, Topology of $3$-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 95-100.
- Jeffrey L. Tollefson, Involutions on $S^{1}\times S^{2}$ and other $3$-manifolds, Trans. Amer. Math. Soc. 183 (1973), 139β152. MR 326738, DOI 10.1090/S0002-9947-1973-0326738-0
- Jeffrey L. Tollefson, A $3$-manifold admitting a unique periodic PL map, Michigan Math. J. 21 (1974), 7β12. MR 350740
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56β88. MR 224099, DOI 10.2307/1970594
- Friedhelm Waldhausen, Γber Involutionen der $3$-SphΓ€re, Topology 8 (1969), 81β91 (German). MR 236916, DOI 10.1016/0040-9383(69)90033-0
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 268 (1981), 377-409
- MSC: Primary 57N10; Secondary 57S25
- DOI: https://doi.org/10.1090/S0002-9947-1981-0632535-3
- MathSciNet review: 632535