On $(K_\ast (\textbf {Z}/p^{2}\textbf {Z})$ and related homology groups
HTML articles powered by AMS MathViewer
- by Leonard Evens and Eric M. Friedlander
- Trans. Amer. Math. Soc. 270 (1982), 1-46
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642328-X
- PDF | Request permission
Abstract:
It is shown that, for $p \geqslant 5$, \[ R = {\mathbf {Z}} / {p^2}{\mathbf {Z}}, {K_3}(R) = {\mathbf {Z}} / {p^2}{\mathbf {Z}} + {\mathbf {Z}} / ({p^2} - 1){\mathbf {Z}}\] and ${K_4}(R) = 0$. Similar calculations are made for $R$ the ring of dual numbers over ${\mathbf {Z}} / p{\mathbf {Z}}$. The calculation reduces to finding homology groups of $\operatorname {Sl} (R)$. A key tool is the spectral sequence of the group extension of $\operatorname {Sl} (n, {p^2})$ over $\operatorname {Sl} (n, p)$. The terms of this spectral sequence depend in turn on the homology of $\operatorname {Gl} (n, p)$ with coefficients various multilinear modules. Calculation of the differentials uses the Charlap-Vasquez description of ${d^2}$.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 H. Cartan, SΓ©minaire H. Cartan, 1954-55, Paris.
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- L. S. Charlap and A. T. Vasquez, The cohomology of group extensions, Trans. Amer. Math. Soc. 124 (1966), 24β40. MR 214665, DOI 10.1090/S0002-9947-1966-0214665-5
- Leonard Evens, The spectral sequence of a finite group extension stops, Trans. Amer. Math. Soc. 212 (1975), 269β277. MR 430024, DOI 10.1090/S0002-9947-1975-0430024-X
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552β586. MR 315016, DOI 10.2307/1970825
- Chih Han Sah, Cohomology of split group extensions, J. Algebra 29 (1974), 255β302. MR 393273, DOI 10.1016/0021-8693(74)90099-4
- Wilberd van der Kallen, Le $K_{2}$ des nombres duaux, C. R. Acad. Sci. Paris SΓ©r. A-B 273 (1971), A1204βA1207 (French). MR 291158
- J. B. Wagoner, Delooping classifying spaces in algebraic $K$-theory, Topology 11 (1972), 349β370. MR 354816, DOI 10.1016/0040-9383(72)90031-6
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 270 (1982), 1-46
- MSC: Primary 18F25; Secondary 20G10, 20J06, 20J10
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642328-X
- MathSciNet review: 642328