## On $(K_\ast (\textbf {Z}/p^{2}\textbf {Z})$ and related homology groups

HTML articles powered by AMS MathViewer

- by Leonard Evens and Eric M. Friedlander
- Trans. Amer. Math. Soc.
**270**(1982), 1-46 - DOI: https://doi.org/10.1090/S0002-9947-1982-0642328-X
- PDF | Request permission

## Abstract:

It is shown that, for $p \geqslant 5$, \[ R = {\mathbf {Z}} / {p^2}{\mathbf {Z}}, {K_3}(R) = {\mathbf {Z}} / {p^2}{\mathbf {Z}} + {\mathbf {Z}} / ({p^2} - 1){\mathbf {Z}}\] and ${K_4}(R) = 0$. Similar calculations are made for $R$ the ring of dual numbers over ${\mathbf {Z}} / p{\mathbf {Z}}$. The calculation reduces to finding homology groups of $\operatorname {Sl} (R)$. A key tool is the spectral sequence of the group extension of $\operatorname {Sl} (n, {p^2})$ over $\operatorname {Sl} (n, p)$. The terms of this spectral sequence depend in turn on the homology of $\operatorname {Gl} (n, p)$ with coefficients various multilinear modules. Calculation of the differentials uses the Charlap-Vasquez description of ${d^2}$.## References

- Hyman Bass,
*Algebraic $K$-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0249491**
H. Cartan, - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - L. S. Charlap and A. T. Vasquez,
*The cohomology of group extensions*, Trans. Amer. Math. Soc.**124**(1966), 24β40. MR**214665**, DOI 10.1090/S0002-9947-1966-0214665-5 - Leonard Evens,
*The spectral sequence of a finite group extension stops*, Trans. Amer. Math. Soc.**212**(1975), 269β277. MR**430024**, DOI 10.1090/S0002-9947-1975-0430024-X - John Milnor,
*Introduction to algebraic $K$-theory*, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR**0349811** - Daniel Quillen,
*On the cohomology and $K$-theory of the general linear groups over a finite field*, Ann. of Math. (2)**96**(1972), 552β586. MR**315016**, DOI 10.2307/1970825 - Chih Han Sah,
*Cohomology of split group extensions*, J. Algebra**29**(1974), 255β302. MR**393273**, DOI 10.1016/0021-8693(74)90099-4 - Wilberd van der Kallen,
*Le $K_{2}$ des nombres duaux*, C. R. Acad. Sci. Paris SΓ©r. A-B**273**(1971), A1204βA1207 (French). MR**291158** - J. B. Wagoner,
*Delooping classifying spaces in algebraic $K$-theory*, Topology**11**(1972), 349β370. MR**354816**, DOI 10.1016/0040-9383(72)90031-6

*SΓ©minaire H. Cartan*, 1954-55, Paris.

## Bibliographic Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**270**(1982), 1-46 - MSC: Primary 18F25; Secondary 20G10, 20J06, 20J10
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642328-X
- MathSciNet review: 642328