On the radial limits of analytic and meromorphic functions
HTML articles powered by AMS MathViewer
- by J. S. Hwang
- Trans. Amer. Math. Soc. 270 (1982), 341-348
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642346-1
- PDF | Request permission
Abstract:
Early in the fifties, A. J. Lohwater proved that if $f(z)$ is analytic in $|z| < 1$ and has the radial limit $0$ almost everywhere on $|z| = 1$, then every complex number $\zeta$ is an asymptotic value of $f(z)$ provided the $\zeta$-points satisfy the following Blaschke condition: $\sum _{k = 1}^\infty (1 - |{z_k}|) < \infty$, where $f({z_k}) = \zeta$, $k = 1 ,2, \ldots$. We may, therefore, ask under the hypothesis on $f(z)$ how many complex numbers $\zeta$ are there whose $\zeta$-points can satisfy the Blaschke condition. We show that there is at most one such number and this one number phenomenon can actually occur if the number is zero.References
- Frederick Bagemihl, Some approximation theorems for normal functions, Ann. Acad. Sci. Fenn. Ser. A I 335 (1963), 5. MR 0158999
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
- E. F. Collingwood and George Piranian, Tsuji functions with segments of Julia, Math. Z. 84 (1964), 246–253. MR 166360, DOI 10.1007/BF01112579
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- A. J. Lohwater, On the radial limits of analytic functions, Proc. Amer. Math. Soc. 6 (1955), 79–83. MR 68625, DOI 10.1090/S0002-9939-1955-0068625-6 N. Lusin and J. Privaloff, Sur l’unicité et la multiplicité des fonctions analytiques, Ann. École Norm. 42 (1925), 143-191.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 270 (1982), 341-348
- MSC: Primary 30D40
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642346-1
- MathSciNet review: 642346