A projective description of weighted inductive limits
Authors:
Klaus-D. Bierstedt, Reinhold Meise and William H. Summers
Journal:
Trans. Amer. Math. Soc. 272 (1982), 107-160
MSC:
Primary 46E10; Secondary 30H05, 46A12
DOI:
https://doi.org/10.1090/S0002-9947-1982-0656483-9
MathSciNet review:
656483
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Considering countable locally convex inductive limits of weighted spaces of continuous functions, if is a decreasing sequence of systems of weights on a locally compact Hausdorff space
, we prove that the topology of
can always be described by an associated system
of weights on
; the continuous seminorms on
are characterized as weighted supremum norms. If
is a sequence of continuous weights on
, a condition is derived in terms of
which is both necessary and sufficient for the completeness (respectively, regularity) of the
-space
, and which is also equivalent to
agreeing algebraically and topologically with the associated weighted space
; for sequence spaces, this condition is the same as requiring that the corresponding echelon space be quasi-normable.
A number of consequences follow. As our main application, in the case of weighted inductive limits of holomorphic functions, we obtain, using purely functional analytic methods, a considerable extension of a theorem due to B. A. Taylor [37] which is useful in connection with analytically uniform spaces and convolution equations.
The projective description of weighted inductive limits also serves to improve upon existing tensor and slice product representations. Most of our work is in the context of spaces of scalar or Banach space valued functions, but, additionally, some results for spaces of functions with range in certain -spaces are mentioned.
- [1] Albert Baernstein II, Representation of holomorphic functions by boundary integrals, Trans. Amer. Math. Soc. 160 (1971), 27–37. MR 283182, https://doi.org/10.1090/S0002-9947-1971-0283182-0
- [2] Carlos A. Berenstein and Milos A. Dostal, Analytically uniform spaces and their applications to convolution equations, Lecture Notes in Mathematics, Vol. 256, Springer-Verlag, Berlin-New York, 1972. MR 0493316
- [3] Klaus-Dieter Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I, J. Reine Angew. Math. 259 (1973), 186–210 (German). MR 318871, https://doi.org/10.1515/crll.1973.259.186
- [4] Klaus-Dieter Bierstedt, Injektive Tensorprodukte und Slice-Produkte gewichteter Räume stetiger Funktionen, J. Reine Angew. Math. 266 (1974), 121–131 (German). MR 344859, https://doi.org/10.1515/crll.1974.266.121
- [5] Klaus-D. Bierstedt, The approximation property for weighted function spaces, Function spaces and dense approximation (Proc. Conf., Univ. Bonn, Bonn, 1974), Inst. Angew. Math., Univ. Bonn, Bonn, 1975, pp. 3–25. Bonn. Math. Schriften, No. 81. MR 0493282
- [6] Klaus-Dieter Bierstedt and Reinhold Meise, Bemerkungen über die Approximations-eigenschaft lokalkonvexer Funktionenräume, Math. Ann. 209 (1974), 99–107 (German). MR 355558, https://doi.org/10.1007/BF01351314
- [7] Klaus-Dieter Bierstedt and Reinhold Meise, Induktive Limites gewichteter Räume stetiger und holomorpher Funktionen, J. Reine Angew. Math. 282 (1976), 186–220 (German). MR 458142
- [8] K.-D. Bierstedt, B. Gramsch, and R. Meise, Lokalkonvexe Garben und gewichtete induktive Limites 𝔉-morpher Funktionen, Function spaces and dense approximation (Proc. Conf., Univ. Bonn, Bonn, 1974), Inst. Angew. Math., Univ. Bonn, Bonn, 1975, pp. 59–72. Bonn. Math. Schriften, No. 81 (German). MR 0500127
- [9] Seán Dineen, Holomorphic functions on strong duals of Fréchet-Montel spaces, Infinite dimensional holomorphy and applications (Proc. Internat. Sympos., Univ. Estadual de Campinas, S ao Paulo, 1975) North-Holland, Amsterdam, 1977, pp. 147–166. North-Holland Math. Studies, Vol. 12, Notas de Mat., No. 54. MR 0493332
- [10] Seán Dineen, Holomorphic germs on compact subsets of locally convex spaces, Functional analysis, holomorphy, and approximation theory (Proc. Sem., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1978) Lecture Notes in Math., vol. 843, Springer, Berlin, 1981, pp. 247–263. MR 610833
- [11] Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970. MR 0285849
- [12] Jean Pierre Ferrier, Spectral theory and complex analysis, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. North-Holland Mathematics Studies, No. 4, Notas de Matemática (49). MR 0352960
- [13] Klaus Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247 (1971), 155–195 (German). MR 287271, https://doi.org/10.1515/crll.1971.247.155
- [14] Alain Goullet de Rugy, Espaces de fonctions pondérables, Israel J. Math. 12 (1972), 147–160 (French, with English summary). MR 324386, https://doi.org/10.1007/BF02764659
- [15] Alexandre Grothendieck, Sur les espaces (𝐹) et (𝐷𝐹), Summa Brasil. Math. 3 (1954), 57–123 (French). MR 75542
- [16] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 0075539
- [17] O. v. Grudzinski, Convolutions-Gleichungen in Räumen von Beurling-Distributionen endlicher Ordnung, Habilitationsschrift, Kiel, 1980.
- [18] Sönke Hansen, On the “fundamental principle” of L. Ehrenpreis, Partial differential equations (Warsaw, 1978) Banach Center Publ., vol. 10, PWN, Warsaw, 1983, pp. 185–201. MR 737222
- [19] Sönke Hansen, Localizable analytically uniform spaces and the fundamental principle, Trans. Amer. Math. Soc. 264 (1981), no. 1, 235–250. MR 597879, https://doi.org/10.1090/S0002-9947-1981-0597879-2
- [20] Ralf Hollstein, Inductive limits and 𝜖-tensor products, J. Reine Angew. Math. 319 (1980), 38–62. MR 586114, https://doi.org/10.1515/crll.1980.319.38
- [21] J. Horváth, Topological vector spaces and distributions. I, Addison-Wesley, Reading, Mass., 1966.
- [22] Gert Kleinstück, Duals of weighted spaces of continuous functions, Function spaces and dense approximation (Proc. Conf., Univ. Bonn, Bonn, 1974), Inst. Angew. Math., Univ. Bonn, Bonn, 1975, pp. 98–114. Bonn. Math. Schriften, No. 81. MR 0467266
- [23] Gottfried Köthe, Topological vector spaces. I, Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. MR 0248498
- [24] Reinhold Meise, Räume holomorpher Vektorfunktionen mit Wachstumsbedingungen und topologische Tensorprodukte, Math. Ann. 199 (1972), 293–312 (German). MR 341046, https://doi.org/10.1007/BF01431482
- [25] Hermann Neus, Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen, Manuscripta Math. 25 (1978), no. 2, 135–145 (German, with English summary). MR 482036, https://doi.org/10.1007/BF01168605
- [26] Bent E. Petersen, Holomorphic functions with growth conditions, Trans. Amer. Math. Soc. 206 (1975), 395–406. MR 379879, https://doi.org/10.1090/S0002-9947-1975-0379879-8
- [27] João Prolla, The approximation property for Nachbin spaces, Approximation theory and functional analysis (Proc. Internat. Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977) North-Holland Math. Stud., vol. 35, North-Holland, Amsterdam-New York, 1979, pp. 371–382. MR 553428
- [28] D. A. Raĭkov, A criterion of completeness of locally convex spaces, Uspehi Mat. Nauk 14 (1959), no. 1 (85), 223–229 (Russian). MR 0105000
- [29] Jean Schmets, Espaces de fonctions continues, Lecture Notes in Mathematics, Vol. 519, Springer-Verlag, Berlin-New York, 1976 (French). MR 0423058
- [30] Laurent Schwartz, Espaces de fonctions différentiables à valeurs vectorielles, J. Analyse Math. 4 (1954/55), 88–148 (French). MR 80268, https://doi.org/10.1007/BF02787718
- [31] Laurent Schwartz, Théorie des distributions à valeurs vectorielles. I, Ann. Inst. Fourier (Grenoble) 7 (1957), 1–141 (French). MR 107812
- [32] Claude Servien, Sur la topologie d’un espace de fonctions entières avec poids, Séminaire Pierre Lelong (Analyse), Année 1974/75, Springer, Berlin, 1976, pp. 90–95. Lecture Notes in Math., Vol. 524 (French). MR 0425592
- [33] W. H. Summers, Weighted locally convex spaces of continuous functions, Ph. D. Dissertation, Louisiana State University, Baton Rouge, 1968.
- [34] W. H. Summers, A representation theorem for biequicontinuous completed tensor products of weighted spaces, Trans. Amer. Math. Soc. 146 (1969), 121–131. MR 251521, https://doi.org/10.1090/S0002-9947-1969-0251521-3
- [35] W. H. Summers, Dual spaces of weighted spaces, Trans. Amer. Math. Soc. 151 (1970), 323–333. MR 270129, https://doi.org/10.1090/S0002-9947-1970-0270129-5
- [36] B. A. Taylor, The fields of quotients of some rings of entire functions, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 468–474. MR 0240329
- [37] B. A. Taylor, A seminorm topology for some (𝐷𝐹)-spaces of entire functions, Duke Math. J. 38 (1971), 379–385. MR 277734
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E10, 30H05, 46A12
Retrieve articles in all journals with MSC: 46E10, 30H05, 46A12
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0656483-9
Article copyright:
© Copyright 1982
American Mathematical Society