Weak -points in Čech-Stone compactifications
Author:
Jan van Mill
Journal:
Trans. Amer. Math. Soc. 273 (1982), 657-678
MSC:
Primary 54D35; Secondary 54D40
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667166-3
MathSciNet review:
667166
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a nonpseudocompact space which is either nowhere ccc or nowhere of weight
. Then
contains a point
which is a weak
-point of
, i.e. if
is countable, then
. In addition, under MA, if
is any nonpseudocompact space, then
contains a point
such that whenever
is countable and nowhere dense, then
.
- [B] Murray G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proc. 5 (1980), 11–25 (1981). MR 624458
- [CS] Soo Bong Chae and Jeffrey H. Smith, Remote points and 𝐺-spaces, Topology Appl. 11 (1980), no. 3, 243–246. MR 585269, https://doi.org/10.1016/0166-8641(80)90023-1
- [C] W. W. Comfort, Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977), no. 4, 417–455. MR 454893, https://doi.org/10.1090/S0002-9904-1977-14316-4
- [vD
] Eric K. van Douwen, Why certain Čech-Stone remainders are not homogeneous, Colloq. Math. 41 (1979), no. 1, 45–52. MR 550626, https://doi.org/10.4064/cm-41-1-45-52
- [vD
] Eric K. van Douwen, Homogeneity of 𝛽𝐺 if 𝐺 is a topological group, Colloq. Math. 41 (1979), no. 2, 193–199. MR 591923, https://doi.org/10.4064/cm-41-2-193-199
- [vD
] -, Remote points, Dissertationes Math. (to appear).
- [vDvM
] Eric K. van Douwen and Jan van Mill, Spaces without remote points, Pacific J. Math. 105 (1983), no. 1, 69–75. MR 688408
- [vDvM
] -, (in preparation).
- [vDvM
] Eric K. van Douwen and Jan van Mill, 𝛽𝜔-𝜔 is not first order homogeneous, Proc. Amer. Math. Soc. 81 (1981), no. 3, 503–504. MR 597672, https://doi.org/10.1090/S0002-9939-1981-0597672-6
- [D] Alan Dow, Weak 𝑃-points in compact CCC 𝐹-spaces, Trans. Amer. Math. Soc. 269 (1982), no. 2, 557–565. MR 637709, https://doi.org/10.1090/S0002-9947-1982-0637709-4
- [DvM] Alan Dow and Jan van Mill, On nowhere dense ccc 𝑃-sets, Proc. Amer. Math. Soc. 80 (1980), no. 4, 697–700. MR 587958, https://doi.org/10.1090/S0002-9939-1980-0587958-2
- [F] Zdeněk Frolík, Non-homogeneity of 𝛽𝑃-𝑃, Comment. Math. Univ. Carolinae 8 (1967), 705–709. MR 266160
- [GH] Leonard Gillman and Melvin Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366–391. MR 78980, https://doi.org/10.1090/S0002-9947-1956-0078980-4
- [GJ] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- [J] I. Juhász, Cardinal functions in topology, Math. Centre Tracts No 34, Amsterdam, 1975.
- [K
] Kenneth Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299–306. MR 314619, https://doi.org/10.1090/S0002-9947-1972-0314619-7
- [K
] -, Weak
-points in
, Colloq. Math. Soc. János Bolyai, vol. 23, Topology (Budapest, 1978), pp. 741-749.
- [vM
] Jan van Mill, Weak 𝑃-points in compact 𝐹-spaces, Topology Proc. 4 (1979), no. 2, 609–628 (1980). MR 598298
- [vM
] Jan van Mill, Sixteen topological types in 𝛽𝜔-𝜔, Topology Appl. 13 (1982), no. 1, 43–57. MR 637426, https://doi.org/10.1016/0166-8641(82)90006-2
- [vM
] Jan van Mill, A remark on the Rudin-Keisler order of ultrafilters, Houston J. Math. 9 (1983), no. 1, 125–129. MR 699055
- [vMM] Jan van Mill and Charles F. Mills, A topological property enjoyed by near points but not by large points, Topology Appl. 11 (1980), no. 2, 199–209. MR 572374, https://doi.org/10.1016/0166-8641(80)90008-5
- [M]
C. F. Mills, An easier proof of the Shelah
-points independence theorem, Trans. Amer. Math. Soc. (to appear).
- [N] Stelios Negrepontis, Absolute Baire sets, Proc. Amer. Math. Soc. 18 (1967), 691–694. MR 214031, https://doi.org/10.1090/S0002-9939-1967-0214031-9
- [W] Edward L. Wimmers, The Shelah 𝑃-point independence theorem, Israel J. Math. 43 (1982), no. 1, 28–48. MR 728877, https://doi.org/10.1007/BF02761683
Retrieve articles in Transactions of the American Mathematical Society with MSC: 54D35, 54D40
Retrieve articles in all journals with MSC: 54D35, 54D40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667166-3
Keywords:
Čech-Stone compactification,
weak -point,
homogeneous
Article copyright:
© Copyright 1982
American Mathematical Society