The Fourier expansion of Eisenstein series for
Authors:
K. Imai and A. Terras
Journal:
Trans. Amer. Math. Soc. 273 (1982), 679-694
MSC:
Primary 10D20; Secondary 10C15, 22E45
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667167-5
MathSciNet review:
667167
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Fourier expansions of Eisenstein series for are obtained by two methods--one analogous to the classical method used by many number theorists, including Weber, in his derivation of the Kronecker limit formula. The other method is analogous to that used by Siegel to obtain Fourier expansions of Eisenstein series for the Siegel modular group. The expansions involve matrix argument
-Bessel functions recently studied by Tom Bengtson. These
-Bessel functions are natural generalizations of the ordinary
-Bessel function which arise when considering harmonic analysis on the symmetric space of the general linear group using a certain system of coordinates.
- [1] W. L. Baily, Introductory lectures on automorphic forms, Princeton Univ. Press, Princeton, N. J., 1973.
- [2] P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373. MR 179141, https://doi.org/10.4064/aa-9-4-365-373
- [3]
T. Bengtson, Matrix
-Bessel functions, Ph. D. thesis, University of California, San Diego, 1981.
- [4] Atle Selberg and S. Chowla, On Epstein’s zeta-function, J. Reine Angew. Math. 227 (1967), 86–110. MR 215797, https://doi.org/10.1515/crll.1967.227.86
- [5] Charles W. Curtis, Representations of finite groups of Lie type, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 5, 721–757. MR 537625, https://doi.org/10.1090/S0273-0979-1979-14648-2
- [6] G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, England; Macmillan Company, New York, 1940. MR 0004860
- [7] D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310 (1979), 111–130. MR 546667
- [8] Kaori Imai, Generalization of Hecke’s correspondence to Siegel modular forms, Amer. J. Math. 102 (1980), no. 5, 903–936. MR 590639, https://doi.org/10.2307/2374197
- [9] Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika, Automorphic forms on 𝐺𝐿(3). I, Ann. of Math. (2) 109 (1979), no. 1, 169–212. MR 519356, https://doi.org/10.2307/1971270
- [10] Tomio Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Tokyo; Halsted Press [John Wiley & Sons], New York-London-Sydney, 1973. MR 0429749
- [11] Tomio Kubota, Some results concerning reciprocity law and real analytic automorphic functions, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 382–395. MR 0340221
- [12] R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 235–252. MR 0249539
- [13] Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 31519, https://doi.org/10.1007/BF01329622
- [14] -, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., vol. 216, Springer-Verlag, New York, 1971.
- [15] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- [16] Carl Ludwig Siegel, Einführung in die Theorie der Modulfunktionen 𝑛-ten Grades, Math. Ann. 116 (1939), 617–657 (German). MR 1251, https://doi.org/10.1007/BF01597381
- [17] H. M. Stark, On the problem of unique factorization in complex quadratic fields., Number Theory (Proc. Sympos. Pure Math, Vol. XII, Houston, Tex., 1967) Amer. Math. Soc., Providence, R.I., 1967, pp. 41–56. MR 0252350
- [18] A. Terras, Fourier analysis on symmetric spaces and applications, lecture notes.
- [19] -, Applications of special functions for the general linear group to number theory, Sém. Delange-Pisot-Poitou, 1976/77, no. 23.
- [20] Audrey A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477–486. MR 323735, https://doi.org/10.1090/S0002-9947-1973-0323735-6
- [21] A. Terras, Fourier coefficients of Eisenstein series of one complex variable for the special linear group, Trans. Amer. Math. Soc. 205 (1975), 97–114. MR 369267, https://doi.org/10.1090/S0002-9947-1975-0369267-2
- [22] -, Noneuclidean harmonic analysis, SIAM Rev. 24 (1982).
- [23] Audrey Terras, Analysis on positive matrices as it might have occurred to Fourier, Lecture Notes in Math., vol. 899, Springer, Berlin-New York, 1981, pp. 442–478. MR 654544
- [24] Audrey Terras, On automorphic forms for the general linear group, Rocky Mountain J. Math. 12 (1982), no. 1, 123–143. MR 649746, https://doi.org/10.1216/RMJ-1982-12-1-123
- [25] W. Weber, Lehrbuch der Algebra. III, 3rd ed., Chelsea, New York, 1961.
- [26] André Weil, Elliptic functions according to Eisenstein and Kronecker, Springer-Verlag, Berlin-New York, 1976. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 88. MR 0562289
Retrieve articles in Transactions of the American Mathematical Society with MSC: 10D20, 10C15, 22E45
Retrieve articles in all journals with MSC: 10D20, 10C15, 22E45
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0667167-5
Keywords:
Eisenstein series,
automorphic forms,
general linear group,
Fourier expansion,
Bruhat decomposition,
Bessel functions for the symmetric space of the general linear group
Article copyright:
© Copyright 1982
American Mathematical Society