Regularizing effects for
Authors:
Michael G. Crandall and Michel Pierre
Journal:
Trans. Amer. Math. Soc. 274 (1982), 159-168
MSC:
Primary 35K55
DOI:
https://doi.org/10.1090/S0002-9947-1982-0670925-4
MathSciNet review:
670925
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: One expression of the fact that a nonnegative solution of the initial-value problem











- [1] Donald G. Aronson and Philippe Bénilan, Régularité des solutions de l’équation des milieux poreux dans 𝑅^{𝑁}, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A103–A105 (French, with English summary). MR 524760
- [2]
Ph. Bénilan, Opérateurs accrétifs et semi-groupes dans les espaces
, Functional Analysis and Numerical Analysis Japan-France Seminar, Tokyo and Kyota, H. Fujita (Ed.), Japan Society for the Promotion of Science, 1978, pp. 15-53.
- [3] Philippe Bénilan and Michael G. Crandall, Regularizing effects of homogeneous evolution equations, Contributions to analysis and geometry (Baltimore, Md., 1980) Johns Hopkins Univ. Press, Baltimore, Md., 1981, pp. 23–39. MR 648452
- [4]
-, The continuous dependence on
of solutions of
, Indiana Univ. Math. J. 30 (1981), 162-177.
- [5] Haïm Brézis and Michael G. Crandall, Uniqueness of solutions of the initial-value problem for 𝑢_{𝑡}-Δ𝜑(𝑢)=0, J. Math. Pures Appl. (9) 58 (1979), no. 2, 153–163. MR 539218
- [6] L. A. Caffarelli and L. C. Evans, Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal. 81 (1983), no. 3, 199–220. MR 683353, https://doi.org/10.1007/BF00250800
- [7] John R. Cannon, Daniel B. Henry, and Daniel B. Kotlow, Classical solutions of the one-dimensional, two-phase Stefan problem, Ann. Mat. Pura Appl. (4) 107 (1975), 311–341 (1976). MR 407456, https://doi.org/10.1007/BF02416479
- [8] Michael Crandall and Michel Pierre, Regularizing effects for 𝑢_{𝑡}+𝐴𝜑(𝑢)=0 in 𝐿¹, J. Functional Analysis 45 (1982), no. 2, 194–212. MR 647071, https://doi.org/10.1016/0022-1236(82)90018-0
- [9] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monos., vol. 23, Amer. Math. Soc., Providence, R.I., 1968.
- [10] E. S. Sabinina, On the Cauchy problem for the equation of nonstationary gas filtration in several space variables, Soviet Math. Dokl. 2 (1961), 166–169. MR 0158190
- [11] Paul Sacks, Thesis, Univ. of Wisconsin-Madison, 1981.
- [12] L. Véron, Coercivité et propriétés régularisantes des semi-groupes nonlinéaires dans les espaces de Banach, Publ. Math. Fac. Sci. Besançon 3 (1977).
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K55
Retrieve articles in all journals with MSC: 35K55
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0670925-4
Keywords:
Regularizing effect,
porous media equations,
strong solution,
degenerate parabolic equations,
Stefan problem
Article copyright:
© Copyright 1982
American Mathematical Society