Disproof of a coefficient conjecture for meromorphic univalent functions
Author:
Anna Tsao
Journal:
Trans. Amer. Math. Soc. 274 (1982), 783-796
MSC:
Primary 30C50; Secondary 30C70
DOI:
https://doi.org/10.1090/S0002-9947-1982-0675079-6
MathSciNet review:
675079
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let denote the class of functions
analytic and univalent in
except for a simple pole at
. A well-known conjecture asserts that
with equality for
. Although the conjecture is true for
and certain subclasses of the class
, the general conjecture is known to be false for all odd
and
.
In , we generalize a variational method of Goluzin and develop second-variational techniques. This enables us in
to construct explicit counterexamples to the conjecture for all
. In fact, the conjectured extremal function does not even provide a local maximum for
,
.
- [1] I. E. Bazilevich, Supplement to the papers ``Zum Koeffizientenproblem der schlichten Funktionen'' and ``Sur les théorèmes de Koebe-Bieberbach'', Mat. Sb. 2 (44) (1937), 689-698. (Russian)
- [2] Ludwig Bieberbach, Über einige Extremalprobleme im Gebiete der konformen Abbildung, Math. Ann. 77 (1916), no. 2, 153–172 (German). MR 1511853, https://doi.org/10.1007/BF01456900
- [3] -, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss. (1916), 940-955.
- [4] J. Clunie, On schlicht functions, Ann. of Math. (2) 69 (1959), 511–519. MR 107715, https://doi.org/10.2307/1970020
- [5] Peter L. Duren, Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 28 (1971), 169–172. MR 271329, https://doi.org/10.1090/S0002-9939-1971-0271329-7
- [6] Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- [7] G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039
- [8] T. H. Gronwall, Some remarks on conformal representation, Ann. of Math. (2) 16 (1914/15), no. 1-4, 72–76. MR 1502490, https://doi.org/10.2307/1968044
- [9] James A. Jenkins, On certain coefficients of univalent functions. II, Trans. Amer. Math. Soc. 96 (1960), 534–545. MR 122978, https://doi.org/10.1090/S0002-9947-1960-0122978-5
- [10] Yoshihisa Kubota, A coefficient inequality for certain meromorphic univalent functions, K\B{o}dai Math. Sem. Rep. 26 (1974/75), 85–94. MR 369683
- [11] Yoshihisa Kubota, On the fourth coefficient of meromorphic univalent functions, K\B{o}dai Math. Sem. Rep. 26 (1974/75), 267–288. MR 379827
- [12] Ch. Pommerenke, On a variational method for univalent functions, Michigan Math. J. 17 (1970), 1–3. MR 255792
- [13] Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. MR 0507768
- [14] Menahem Schiffer, Sur un problème d’extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48–55 (French). MR 1505083
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C50, 30C70
Retrieve articles in all journals with MSC: 30C50, 30C70
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0675079-6
Article copyright:
© Copyright 1982
American Mathematical Society