Stochastic waves
HTML articles powered by AMS MathViewer
- by E. B. Dynkin and R. J. Vanderbei
- Trans. Amer. Math. Soc. 275 (1983), 771-779
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682731-6
- PDF | Request permission
Abstract:
Let $\phi$ be a real valued function defined on the state space of a Markov process ${x_t}$. Let ${\tau _t}$ be the first time ${x_t}$ gets to a level set of $\phi$ which is $t$ units higher than the one on which it started. We call the time changed process $\tilde {x}_{t} = x_{{\tau _t}}$ a stochastic wave. We give conditions under which this process is Markovian and we evaluate its infinitesimal operator.References
- E. B. Dynkin, Markov processes. Vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Band 121, vol. 122, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. MR 0193671
- E. B. Dynkin, Harmonic functions associated with several Markov processes, Adv. in Appl. Math. 2 (1981), no. 3, 260–283. MR 626862, DOI 10.1016/0196-8858(81)90007-5 O. D. Kellogg, Foundations of potential theory, Dover, New York, 1953.
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- Carlo Miranda, Partial differential equations of elliptic type, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR 0284700
- Frank Spitzer, Some theorems concerning $2$-dimensional Brownian motion, Trans. Amer. Math. Soc. 87 (1958), 187–197. MR 104296, DOI 10.1090/S0002-9947-1958-0104296-5
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Robert Joseph Vanderbei, Toward a stochastic calculus for several Markov processes, Adv. in Appl. Math. 4 (1983), no. 2, 125–144. MR 700843, DOI 10.1016/0196-8858(83)90007-6
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 771-779
- MSC: Primary 60J25
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682731-6
- MathSciNet review: 682731