A general maximal operator and the $A_{p}$-condition
HTML articles powered by AMS MathViewer
- by M. A. Leckband and C. J. Neugebauer
- Trans. Amer. Math. Soc. 275 (1983), 821-831
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682735-3
- PDF | Request permission
Abstract:
A rearrangement inequality for a general maximal operator $Mf(x) = {\sup _{x \in Q}}\int {f\phi _{Q} d\nu }$ is established. This is then applied to the Hardy-Littlewood maximal operator with weights.References
- Miguel de Guzmán, Real variable methods in Fourier analysis, Notas de Matemática [Mathematical Notes], vol. 75, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 596037
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874 R. A. Hunt, D. S. Kurtz and C. J. Neugebauer, A note on the equivalence of ${A_p}$ and Sawyer’s condition for equal weights (Proc. Zygmund Conf., Chicago Univ., 1981) (to appear).
- W. B. Jurkat and J. L. Troutman, Maximal inequalities related to generalized a.e. continuity, Trans. Amer. Math. Soc. 252 (1979), 49–64. MR 534110, DOI 10.1090/S0002-9947-1979-0534110-9
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt and Richard L. Wheeden, Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Studia Math. 55 (1976), no. 3, 279–294. MR 417671, DOI 10.4064/sm-55-3-279-294
- Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, DOI 10.4064/sm-75-1-1-11
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 275 (1983), 821-831
- MSC: Primary 42B25; Secondary 28A15, 46E30
- DOI: https://doi.org/10.1090/S0002-9947-1983-0682735-3
- MathSciNet review: 682735