An algebraic classification of certain simple even-dimensional knots
HTML articles powered by AMS MathViewer
- by C. Kearton
- Trans. Amer. Math. Soc. 276 (1983), 1-53
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684492-3
- PDF | Request permission
Abstract:
The simple $2q$-knots, $q \geqslant 4$, for which ${H_q}(\tilde {K})$ contains no ${\mathbf {Z}}$-torsion, are classified by means of Hermitian duality pairings on their homology and homotopy modules.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Richard C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. (2) 65 (1957), 340–356. MR 85512, DOI 10.2307/1969966
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
- M. Š. Farber, Isotopy types of knots of codimension two, Trans. Amer. Math. Soc. 261 (1980), no. 1, 185–209. MR 576871, DOI 10.1090/S0002-9947-1980-0576871-7
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- C. Kearton, Obstructions to embedding and isotopy in the metastable range, Math. Ann. 243 (1979), no. 2, 103–113. MR 543720, DOI 10.1007/BF01420417
- C. Kearton, Attempting to classify knot modules and their Hermitian pairings, Knot theory (Proc. Sem., Plans-sur-Bex, 1977) Lecture Notes in Math., vol. 685, Springer, Berlin, 1978, pp. 227–242. MR 521736
- C. Kearton, Presentations of $n$-knots, Trans. Amer. Math. Soc. 202 (1975), 123–140. MR 358795, DOI 10.1090/S0002-9947-1975-0358795-1
- C. Kearton, Signatures of knots and the free differential calculus, Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 118, 157–182. MR 534830, DOI 10.1093/qmath/30.2.157
- C. Kearton, Blanchfield duality and simple knots, Trans. Amer. Math. Soc. 202 (1975), 141–160. MR 358796, DOI 10.1090/S0002-9947-1975-0358796-3
- C. Kearton, An algebraic classification of some even-dimensional knots, Topology 15 (1976), no. 4, 363–373. MR 442948, DOI 10.1016/0040-9383(76)90030-6
- C. Kearton and W. B. R. Lickorish, Piecewise linear critical levels and collapsing, Trans. Amer. Math. Soc. 170 (1972), 415–424. MR 310899, DOI 10.1090/S0002-9947-1972-0310899-2
- Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225–271 (French). MR 189052
- Sadayoshi Kojima, A classification of some even dimensional fibered knots, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 3, 671–683. MR 645407
- Sadayoshi Kojima, Classification of simple knots by Levine pairings, Comment. Math. Helv. 54 (1979), no. 3, 356–367. MR 543336, DOI 10.1007/BF02566280
- Jerome Levine, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1–50. MR 461518, DOI 10.1090/S0002-9947-1977-0461518-0
- J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537–554. MR 200922, DOI 10.2307/1970459
- J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185–198. MR 266226, DOI 10.1007/BF02567325
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- D. G. Northcott, An introduction to homological algebra, Cambridge University Press, New York, 1960. MR 0118752
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 1-53
- MSC: Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684492-3
- MathSciNet review: 684492